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Li-ion Battery in the World

= Li-ion Batteries are everywhere

Lithium carbonate use for various devices Li-ion battery market development for electric
Range of LCE (lithium carbonate equivalent) vehicles
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Battery Charging

= Tesla SuperCharger | iPhone Battery Charging

Battery Health
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Lithium lon Batteries

Lithium-ion batteries require a Battery Management
System (BMS) in order to work properly.

The BMS provides suitable charging procedures by
finding the optimal trade-off between the following
requirements:

= Fast Charging

= Safety




Standard Charging Methods

The mostly used charging protocol is the Constant-Current Constant Voltage (CC-CV).

Constant Current Constant Voltage
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CC-CV is a simple control procedure which results in
reasonable performance.
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LIMITING FACTOR: CC-CV does not consider temperature constraints, whose
satisfaction is crucial for guaranteeing battery safe operations.
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Model-based Optimal Charging

Advanced Battery Management Systems (ABMS) rely on mathematical models
in order to achieve high performance.




Model-based Optimal Charging

The model choice is fundamental during the advanced BMS design phase.

* Equivalent circuit models (ECM) | "
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Model-based Optimal Charging

The work of Klein et al. 2011:

 bounds on temperature and current

* bounds on the side reaction overpotential in
order to avoid lithium-ion plating
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Model-based Optimal Charging

The work of Klein et al. 2011
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The overpotential constraint allows to remove the conservative voltage
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constraint but requires state estimation because it is not measurable.
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Model-free Optimal Charging

Solution: exploitation of model-free control strategies which are able to
provide fast and safe charging while relying on the available measurements.
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Reinforcement Learning Framework

Types of Machine Learning

Machine
Learning
|
Supervised Unsupervised Reinforcement
Task Driven Data Driven Learn from
(Predict next value) (Identify Clusters) Mistakes
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Reinforcement Learning Framework

Definition: reinforcement learning (RL) is an area of machine learning concerned
with how agents ought to take actions in an environment in order to maximize
some notion of cumulative reward.
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Reinforcement Learning Framework

Consider a Markov Decision Process (MDP):

e S:set of possible states

A: set of possible actions
R: reward distribution
P: transition probability

y: discount factor

state| |reward

'l Agent l
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The agent selects the action according to the policy m*: § — 4 which maximizes the
long term expected return (a.k.a. state value function)
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State-Action Value Function

The state-action value function corresponds to the long-term expected return
when action a; is taken in state s; and then the policy i is followed henceforth:

QW(St,at) i E‘r»i‘}t.Si}tNE,ai;.[NTr [Rt | Stﬂ at]

The state-action value function can also be expressed by the following recursive
relationship also known as Bellman equation:

QW(St: a’t) :Er‘i>z, Simt~FE ["’(Stz a't)+ A’/]Eat:—l"“ﬂ' [Qﬂ(st"’f‘l’ at"’f‘l)]]
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Optimal Value Functions and Optimal Policy

By definition the optimal policy is given as: " =argmax V" (s;)
w
I i . * — aro ; *( s .
If one considers the Q-function: T = arg 33;351 Q" (s8¢, ay) ‘ Q-learning
where the following equation holds: V*(s;) = max Q" (s, a;)

a:cA
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Different RL algorithms

The main RL algorithms can be divided in two main groups:
 Tabular methods: the value functions are expressed using tables whose entrances

are states and actions. These approaches are suitable for small and discrete actions
and states spaces (curse of dimensionality).

* Approximate Dynamic Programming (ADP): the value functions are represented via
approximators (e.g., neural networks in deep reinforcement learning). In particular:
* Deep Q-learning: discrete set of actions

* Deep Deterministic Policy Gradient: continuous set of actions
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Deep Deterministic Policy Gradient: actor-critic

The DDPG algorithm is based on the actor-critic paradigm.

Actor-critic methods learn approximations to both policy and value functions:

actor is a reference to the learned policy
critic refers to the learned value function
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Deep Deterministic Policy Gradient: algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network (s, a|0?) and actor y(s|0*) with weights 69 and 6*.
Initialize target network )’ and ./ with weights 69" «— 69, 91" +— g~
Initialize replay buffer I

for episode = 1, M do

Initialize a random process A for action exploration Lillicrap et al. 2016.

Receive initial observation state s
fort=1,Tdo
Select action a; = pu(s¢|0") + Ny according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state sy ¢
Store transition (s, a¢, 74, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;, 74, si+1) from R
Sety; =i + ”;“Q'(-S'z'+1-/l/('9i+1|9”1)|9Q/)
Update critic by minimizing the loss: L = % S (i — Q(si,a:|09))2
Update the actor policy using the sampled policy gradient:

1 . ’
v()“'] = ,TZan(S-("|0Q)|s=Si,a=u(Sz’)v9”'u<S|Hu)

/ S;
4

Update the target networks:
09 «— 769 + (1 —7)6°
0 — T + (1 —T)0*

end for
end for




Deep Deterministic Policy Gradient: exploration

The exploration is performed by adding a
noise to the action computed by the
actor.

a, = u(s¢|6%) + NV

During the testing phase of the strategy the exploration noise is removed.

—

GREEDY POLICY
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Li-ion Battery

= Battery Modeling

[ current collector Electrolyte
B8 Negative electrode

Separator
R\ Positive electrode

s Positive Active Material
Positive Current Collector
Separator .

s Negative Active Material

Negative Current Collector

Sources:

http://www.maths.ox.ac.uk/node/34037
Goutam, Shovon, et al. "Three-dimensional electro-thermal model of Li-ion pouch cell: Analysis and comparison of cell design factors and model assumptions." Applied thermal engineering 126 (2017): 796-808.
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Electrochemical Model

= Single Particle Model w/ Electrolyte and Thermal (SPMeT)
* Reduced-Order Model

Input ] Output

Current Plant J > Measurements
Governing Equations aCS (r £) = ii Dir2 (r t)]
1. Solid-phase dynamics (PDE) .
2. Electrolyte-phase dynamics (PDE) ja B effr J 1-tc € (— sep 4+
3. Thermal dynamics (ODE) ‘e g (x, t) = [D (c2 ) (x t)+ F le(x, )] J € sep, 4]
4. VOItage output chell ( ) (t) Tcell(t) - Too

p meRth
RTcell(t) . I(t) RTcell(t) . _I(t)
Vr(t) =— p—sinh| o+ () oF S\ o aic o

+U+(cs+s(t)) U~ (css(t))+
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Electrochemical Model-based Controls

= Optimal Control Problem
* Based on the physical information, we can design an optimal controller for Fast-Charging.
* Fast-charging problem is “Constrained Minimum-Time Optimal Control Problem”

Ly

min 1
I(t).t
(t),ty i—t0

subject to
battery dynamics in (17)-(22)
Vr(to) = Vo, Teen(to) = To
SOC(t7) = SOCrs, I(t) € [IMn, [™]
Vr(t) < V™, Teen(t) < Tean

cell
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Electrochemical Model

= Challenges
* Electrochemical model is partially observable system

— Limited measurements
— Model complexity

* Battery model changes over time
— Aging

* Discretizing PDEs results in large scale systems
— Numerical challenges

* Proving optimality of control is almost impossible
— Curse of dimensionality

- ——— ~—" S S S
1M LiPFg-PC 4M LiFSi-DME

* Validate RL-framework for battery fast-charging problem

Research Questions
e Does RL learn “constrained optimal control” ?
e Does RL adapt its policy as the environment changes ?
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Fast Charging Problem

The fast charging problem is formulated as a constrained optimization program:

min 1 |
I(t).t
(€).ts t=tg

subject to
battery dynamics
Vr(to) = Vo, Teen(to) = To
SOC(t7) = SOCky, 1(t) € [I™, 7]
Vr(t) < Vp™, Teen(t) < Ty

cell

We consider a voltage constraint instead of the one on the side reaction
overpotential since it is easier to check its violation in a realistic scenario.

28



Reward Design

The reward function is designed in order to achieve the required goal:

Tt+1 = Thast|T 'rsafety(sta at)

Tsafety(st; at) — 'rvolt(st, at) + 'rtemp(st; at)

(—100(‘/.],(1‘) _ Vmax)’ if VT(t) > 1/ max
Took(8, ) = <LO ' otherwise !

(—5(Teen(t) — T™)  if Troy(t) > TMax
'rtemp(st: at) — <L0 ( cell( ) cell ) Othec:\]l/(ls)e cell
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Full and Reduced States

We perform two different simulations.

* Firstly, all the states of the SPMeT (61) are assumed to be measurable
(solid phase concentration, electrolyte concentration and temperature).

Issue: a suitable model-based state observer is required for applying this
procedure in a realistic framework.

Solution: we drop the assumption of availability of all the states and we
considered only 2 states

 SOC and temperature.

The results are surprisingly similar to the ones obtained by considering the
whole states vector.

30



Results of the Learning Process

0 Training performance 0 Testing Performance
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Validation of the Optimal Strategy

Initial condition of 3.6 V and 27°C
(SOC = 0.3).

The charging time is 40 min for both

the approaches (full and reduced
states).

The obtained reward is also similar:
e —5.38 reduced states
e —4.69 full states

The constraints (Vi = 4.2V and
Tmax = 47°C) are not violated.

Current [(7]
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Online Adaptation to Environment Changes

Consider the Possibility of a variation in the environment parameters (e.g.
ageing in Lithium-lon batteries).

How does the proposed approach perform?
- >

We consider an increase in the film resistance (R, and Rf;) and in the heat
generation (Q).
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Results of the Learning Process — Online Adaptation

Training performance
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Validation of the Optimal Strategy — Online Adaptation

Initial condition of 3.6 V and 27°C
(SOC = 0.3).

The charging time is 66 min for the

reduced states approach and 68 min
for the full one.

The obtained reward is also similar:
e —7.79 reduced states
e —8.19 full states

The constraints (Vi = 4.2V and
Tmax = 47°C) are not violated.
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Validation of the Optimal Strategy — Online Adaptation

0
With the original policy without _os| TAAMAMAAAMAMAMAAARA .o b
ageing adaptation the constraints i 4 =
i)
are slightly violated. ok il e (gt

This implies faster charging but also
lower reward:
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Conclusion & Future Work

Validation of RL framework for Fast-charging

Design of Full-states vs Reduced-states feedback controller

Experimental validation

Full-order model (P2D) model with electrochemical constraints.
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Thank you very much for your attention

Suggestions, questions and advices are welcomed!
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