Reinforcement Learning-based Fast Charging Control Strategy for Li-ion Batteries

TBSI RL-Course

Saehong Park, Andrea Pozzi, Michael Whitmeyer, Hector Perez Wontae Joe, Davide Raimondo, Scott Moura

July 16, 2020

Agenda

- Battery Overview and Literature Review
- Reinforcement Learning
- Battery Model
- Simulation Results

Li-ion Battery in the World

Li-ion Batteries are everywhere

Lithium carbonate use for various devices

Range of LCE (lithium carbonate equivalent)

CNBC

Li-ion battery market development for electric vehicles

156\$/kWh in 2019

Battery Charging

Tesla SuperCharger | iPhone Battery Charging

10:17 🔊		. 11 🗢 🚱
< Battery	Battery Health	ı
Phone batterie: consumable co they age. Learr	s, like all rechargeable omponents that become n more	batteries, are e less effective as
Maximum C	apacity	88%
This is a measu was new. Lowe usage between	re of battery capacity r capacity may result ir n charges.	relative to when it n fewer hours of
Peak Perfor	mance Capability	
Your battery is performance.	currently supporting n	ormal peak
Optimized E	Battery Charging	
To reduce batte charging routin 80% until you r	ery aging, iPhone learn e so it can wait to finis need to use it.	s from your daily h charging past

Lithium Ion Batteries

Lithium-ion batteries require a Battery Management System (BMS) in order to work properly.

The BMS provides suitable charging procedures by finding the optimal trade-off between the following requirements:

- Fast Charging
- Safety

Standard Charging Methods

The mostly used charging protocol is the Constant-Current Constant Voltage (CC-CV).

CC-CV is a **simple control procedure** which results in **reasonable performance.**

LIMITING FACTOR: CC-CV **does not consider temperature constraints**, whose satisfaction is crucial for guaranteeing battery safe operations.

Advanced Battery Management Systems (ABMS) rely on *mathematical models* in order to achieve high performance.

Model-based Optimal Charging

The model choice is fundamental during the advanced BMS design phase.

• Equivalent circuit models (ECM)

• Electrochemical models (EM)

The work of **Klein et al. 2011**:

- bounds on temperature and current
- bounds on the side reaction overpotential in order to avoid lithium-ion plating

The work of **Klein et al. 2011**:

- bounds on temperature and current
- bounds on side reaction overpotential in order to avoid lithium ion plating

The **overpotential constraint** allows to remove the conservative voltage constraint but requires state estimation because it is **not measurable**.

Solution: exploitation of **model-free** control strategies which are able to provide fast and safe charging while relying on the available measurements.

For the **first time** we propose the use of **reinforcement learning (RL)** algorithms for battery cahrging applications.

Agenda

- Battery Overview and Literature Review
- Reinforcement Learning
- Battery Model
- Simulation Results

Reinforcement Learning Framework

Definition: reinforcement learning (RL) is an area of **machine learning** concerned with how **agents** ought to take **actions** in an **environment** in order to maximize some notion of cumulative **reward**.

Reinforcement Learning Framework

Consider a Markov Decision Process (MDP):

- S: set of possible states
- A: set of possible actions
- *R*: reward distribution
- *P*: transition probability
- *γ*: discount factor

The agent selects the action according to the policy $\pi^*: S \to A$ which maximizes the long term expected return (a.k.a. state value function)

$$R_t = \sum_{k=0}^{\infty} \gamma^k r(s_{t+k}, a_{t+k})$$

$$V^{\pi}(s_t) \doteq \mathbb{E}_{r_{i>t}, s_{i>t} \sim E, a_{i\geq t} \sim \pi} \Big[R_t \mid s_t \Big]$$

The state-action value function corresponds to the long-term expected return when action a_t is taken in state s_t and then the policy π is followed henceforth:

$$Q^{\pi}(s_t, a_t) \doteq \mathbb{E}_{r_{i>t}, s_{i>t} \sim E, a_{i>t} \sim \pi} \Big[R_t \mid s_t, a_t \Big]$$

The state-action value function can also be expressed by the following recursive relationship also known as **Bellman equation**:

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{r_{i>t}, s_{i>t} \sim E} \left[r(s_{t}, a_{t}) + \gamma \mathbb{E}_{a_{t+1} \sim \pi} \left[Q^{\pi}(s_{t+1}, a_{t+1}) \right] \right]$$

Optimal Value Functions and Optimal Policy

By definition the optimal policy is given as:

$$\pi^* = \arg\max_{\pi} V^{\pi}(s_t)$$

If one considers the Q-function:

$$\pi^* = \arg \max_{a_t \in \mathcal{A}} Q^*(s_t, a_t)$$
 Q-learning

where the following equation holds:

$$V^*(s_t) = \max_{a_t \in \mathcal{A}} Q^*(s_t, a_t)$$

The main RL algorithms can be divided in two main groups:

• **Tabular methods**: the value functions are expressed using tables whose entrances are states and actions. These approaches are suitable for small and discrete actions and states spaces (curse of dimensionality).

- Approximate Dynamic Programming (ADP): the value functions are represented via approximators (e.g., neural networks in deep reinforcement learning). In particular:
 - Deep Q-learning: discrete set of actions
 - Deep Deterministic Policy Gradient: continuous set of actions

Deep Deterministic Policy Gradient: actor-critic

The DDPG algorithm is based on the **actor-critic** paradigm.

Actor-critic methods learn approximations to both policy and value functions:

- **actor** is a reference to the learned policy
- critic refers to the learned value function

Deep Deterministic Policy Gradient: algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a | \theta^Q)$ and actor $\mu(s | \theta^\mu)$ with weights θ^Q and θ^μ . Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$ Initialize replay buffer Rfor episode = 1, M do Initialize a random process \mathcal{N} for action exploration Receive initial observation state s_1 for t = 1, T do Select action $a_t = \mu(s_t | \theta^\mu) + \mathcal{N}_t$ according to the current policy and exploration noise Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t, a_t, r_t, s_{t+1}) in RSample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from RSet $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1} | \theta^{\mu'}) | \theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i | \theta^Q))^2$ Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q}) |_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s_{i}}$$

Update the target networks:

$$\begin{aligned} \theta^{Q'} &\leftarrow \tau \theta^Q + (1 - \tau) \theta^{Q'} \\ \theta^{\mu'} &\leftarrow \tau \theta^\mu + (1 - \tau) \theta^{\mu'} \end{aligned}$$

end for end for

Deep Deterministic Policy Gradient: exploration

The exploration is performed by **adding a noise** to the action computed by the actor.

 $a_t = \mu(s_t | \theta^{\mu}) + \mathcal{N}_t$

During the testing phase of the strategy the exploration noise is removed.

Agenda

- Battery Overview and Literature Review
- Reinforcement Learning
- Battery Model
- Simulation Results

Li-ion Battery

Battery Modeling

Sources:

http://www.maths.ox.ac.uk/node/34037

Goutam, Shovon, et al. "Three-dimensional electro-thermal model of Li-ion pouch cell: Analysis and comparison of cell design factors and model assumptions." Applied thermal engineering 126 (2017): 796-808.

Electrochemical Model

- Single Particle Model w/ Electrolyte and Thermal (SPMeT)
 - Reduced-Order Model

Electrochemical Model-based Controls

Optimal Control Problem

- Based on the physical information, we can **design** an optimal controller for **Fast-Charging**.
- Fast-charging problem is "Constrained Minimum-Time Optimal Control Problem"

$$\begin{split} \min_{I(t),t_f} \sum_{t=t_0}^{t_f} 1 \\ \text{subject to} \\ & \text{battery dynamics in (17)-(22)} \\ & V_T(t_0) = V_0, \, T_{\text{cell}}(t_0) = T_0 \\ & SOC(t_f) = SOC_{\text{ref}}, \, I(t) \in \left[I^{\min}, \, I^{\max}\right] \\ & V_T(t) \leq V_T^{\max}, \, T_{\text{cell}}(t) \leq T_{\text{cell}}^{\max} \end{split}$$

Electrochemical Model

Challenges

- Electrochemical model is partially observable system
 - Limited measurements
 - Model complexity
- Battery model changes over time
 - Aging
- Discretizing PDEs results in large scale systems

 Numerical challenges
- Proving optimality of control is almost impossible
 - Curse of dimensionality

<u>Goal</u>

• Validate RL-framework for battery fast-charging problem

Research Questions

- Does RL learn "constrained optimal control" ?
- Does RL adapt its policy as the environment changes ?

Agenda

- Battery Overview and Literature Review
- Reinforcement Learning
- Battery Model
- Simulation Results

Fast Charging Problem

The fast charging problem is formulated as a **constrained optimization program**:

We consider a voltage constraint instead of the one on the side reaction overpotential since it is easier to check its violation in a realistic scenario.

The reward function is designed in order to achieve the required goal:

$$r_{t+1} = r_{\text{fast}} + r_{\text{safety}}(s_t, a_t)$$

with

$$r_{\text{fast}} = -0.1$$

$$r_{\text{safety}}(s_t, a_t) = r_{\text{volt}}(s_t, a_t) + r_{\text{temp}}(s_t, a_t)$$

$$\begin{aligned} r_{\text{volt}}(s_t, a_t) &= \begin{cases} -100(V_{\text{T}}(t) - V_{\text{T}}^{\max}), & \text{if } V_{\text{T}}(t) \geq V_{\text{T}}^{\max} \\ 0, & \text{otherwise} \end{cases} \\ r_{\text{temp}}(s_t, a_t) &= \begin{cases} -5(T_{\text{cell}}(t) - T_{\text{cell}}^{\max}), & \text{if } T_{\text{cell}}(t) \geq T_{\text{cell}}^{\max} \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

We perform two different simulations.

• Firstly, all the states of the SPMeT (61) are assumed to be measurable (solid phase concentration, electrolyte concentration and temperature).

Issue: a suitable **model-based** state observer is required for applying this procedure in a realistic framework.

Solution: we drop the assumption of availability of all the states and we considered only **2 states**

• SOC and temperature.

The **results are surprisingly similar** to the ones obtained by considering the whole states vector.

Results of the Learning Process

1000

2000

Episode Number

3000

4000

45min

5000

(e)

Validation of the Optimal Strategy

Initial condition of 3.6 V and $27^{\circ}C$ (SOC = 0.3).

The **charging time** is 40 *min* for both the approaches (full and reduced states).

The obtained reward is also similar:

- -5.38 reduced states
- -4.69 full states

The constraints ($V_{max} = 4.2 V$ and $T_{max} = 47^{\circ}C$) are not violated.

Online Adaptation to Environment Changes

Consider the Possibility of a variation in the environment parameters (e.g. ageing in Lithium-Ion batteries).

How does the proposed approach perform?

We consider an increase in the **film resistance** $(R_{f,p} \text{ and } R_{f,n})$ and in the **heat** generation (\dot{Q}) .

Results of the Learning Process – Online Adaptation

Validation of the Optimal Strategy – Online Adaptation

Initial condition of 3.6 V and $27^{\circ}C$ (SOC = 0.3).

The **charging time** is 66 *min* for the reduced states approach and 68 *min* for the full one.

The obtained reward is also similar:

- -7.79 reduced states
- -8.19 full states

The constraints ($V_{max} = 4.2 V$ and $T_{max} = 47^{\circ}C$) are not violated.

Validation of the Optimal Strategy – Online Adaptation

With the original policy without ageing adaptation the constraints are slightly violated.

This implies faster charging but also lower reward:

- -81.78 reduced states
- -82.16 full states

Finally, oscillations in the applied input current can be reduced with a **regularization term**.

Conclusion & Future Work

- Validation of RL framework for Fast-charging
- Design of Full-states vs Reduced-states feedback controller
- Experimental validation
- Full-order model (P2D) model with electrochemical constraints.

Thank you very much for your attention!!

Suggestions, questions and advices are welcomed!

