Introduction to Reinforcement Learning

w/ some applications to Energy

LEC 1b: Motivation and History

Instructors: Professor Scott Moura & Saehong Park

TA: Xinyi Zhao

Summer 2020

Motivation

What problems does RL solve?

http://microsat.sm.bmstu.ru/e-library/Launch/Dnepr_GEO.pdf

Example 2: Hybrid Vehicle Energy Management

Example 3: Clean Energy

Example 4: My puppy Juno

Short History – Ivan Pavlov (1890s)

Short History – 20th Century

Richard Bellman – 1950s

Dynamic Programming Markov Decision Processes Optimal Control

Chris Watkins – 1989 Q-learning

Paul Werbos – 1970s-1990s PhD Thesis: Backpropagation "Heuristic Dynamic Programming"

Dimitri Bertsekas – 1990s-2000s Dynamic Programming Neuro-dynamic programming

Recent History – 21st Century

Search: ((reinforcement learning) WN ALL)

Click to limit your results

Reidmiller, Gabel, Hafner, Lange "Reinforcement Learning for Robot Soccer", 2009

provided by Engineering Village ©2020 Reed Elsevier

Problem Setup

Control Engineer view

Computer Science view

Key Characteristics of RL

• Dynamic system

• Reward/cost

• Learning