
Introduction to Reinforcement Learning

A Short Course:

Floating Offshore Wind Power Case Study

Scott Moura

July 2020

1 Introduction & Background

In this problem, we explore reinforcement learning for floating offshore wind turbines.
Locating wind farms at sea provides access to higher and more consistent wind speeds. Most offshore

wind turbines are mounted on the sea floor to ensure structural stability. However, this limits offshore
wind farms to shallow depths (≤ 60 meters), whereas high speed wind typically occurs in deep water (≥ 60
meters)12. Balancing a floating wind turbine to be upright, subject to transient wind gusts and ocean waves
provides a fascinating and important technological challenge.

Figure 1: Various configurations for Offshore Floating and Bottom-Fixed Wind Turbines.

Consider the floating wind turbine schematic in Fig. 3. For this problem, consider rotational dynamics in
the 2D plane only. The wind turbine is modeled as an inverted pendulum. That is, the nacelle and turbine
blades (top part) have mass m. The mast has height L and is rigid and massless. The turbine’s angle with
vertical is denoted θ, and it is free to pivot on the float. Do not consider vertical and horizontal movements.
The nacelle and blades experience transient force Fw(t) from the wind. It also experiences a transient torque
τs(t) from the sea. The float has a motor, and can compensate for angular displacements with controlled
torque τ(t).

1A. Myhr, C. Bjerkseter, A. Ågotnes, T. Nygaard, Levelised cost of energy for offshore floating wind turbines in a life cycle
perspective, Renewable Energy, Vol. 66, pp. 714-728, June 2014;

2J. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW Reference Wind Turbine for Offshore System
Development. Technical Report NREL/TP-500-38060, February 2009.

1

Fw(t)

mgθ(t)

L, Height of Mast

τs(t)

Force
from wind

Torque from sea
Fixed Pivot

τ(t) Controlled Torque

Nacelle &
Blades

Figure 2: Schematic of floating wind turbine, including wind force, sea torque, and controlled torque.

1.1 Control Objective

Our control objective is to design a RL controller that stabilizes the turbine in the upright position, using
controlled torque applied at the pivot. Online RL algorithms are appealing because

• Accurately modeling the wind force Fw(t) and torque from the sea τs(t) can be very difficult. Instead,
we seek to learn a controller online that is robust to these disturbances.

• There are unmodeled physics. We focus on one degree-of-freedom dynamics, but there are six degrees-
of-freedom in reality.

Our control objective is to design a reinforcement learning controller that stabilizes the turbine in the
upright position, using controlled torque applied at the pivot.

2 Mathematical Model

Application of Newton’s second law in rotational coordinates yields the following equations of motion.

mL2 dω

dt
(t) = mgL sin θ(t) + Fw(t)L cos θ(t) + τs(t)− τ(t) (1)

dθ

dt
(t) = ω(t) (2)

Note the inputs are divided into two categories:

• Controllable inputs: controlled torque τ(t)

• Uncontrollable inputs: Torque from the sea τs(t); Force from wind Fw(t)

The uncontrollable inputs from the sea and wind represent exogeneous disturbances. Now, since our RL
algorithms operate on discrete-time dynamical systems, we will approximate the time derivatives using the
forward Euler method: d

dtx(t) ≈ [x(t+ ∆t)− x(t)] /∆t. This yields:

ωk+1 = ωk +
g∆t

L
sin θk +

Fw,k∆t

mL
cos θk +

∆t

mL2
[τs,k − τk] (3)

θk+1 = θk + ∆t · ωk (4)

where continuous time dimension t has been replaced by discrete time index k.

2

2.1 Linearized Model

The equations of motion are nonlinear in the state θ, due to the sin and cos terms. The model can be easily
linearized using the small angle approximation, where for small θ:

• sin θ = θ

• cos θ = 1

The small angle approximation applied to the equations of motion yields:

ωk+1 = ωk +
g∆t

L
θk +

Fw,k∆t

mL
+

∆t

mL2
[τs,k − τk] (5)

θk+1 = θk + ∆t · ωk (6)

This can be written in matrix-vector form as:[
ωk+1

θk+1

]
︸ ︷︷ ︸

=xk+1

=

[
1 g∆t

L
∆t 1

]
︸ ︷︷ ︸

=A

[
ωk

θk

]
︸ ︷︷ ︸

=xk

+

[−∆t
mL2

0

]
︸ ︷︷ ︸

=B

τk︸︷︷︸
=uk

+

[
∆t
mL

∆t
mL2

0 0

]
︸ ︷︷ ︸

=Bd

[
Fw,k

τs,k

]
︸ ︷︷ ︸

=dk

(7)

or more compactly:
xk+1 = Axk +Buk +Bddk (8)

3 Optimal Control Formulation

We are now positioned to formulate the optimal control problem. Recall the objective is to stabilize the
wind turbine in the upright position, when subjected to disturbances from wind and sea.

minimize J =

∞∑
k=0

[
xTkQxk +Ru2

k

]
(9)

subject to: ωk+1 = ωk +
g∆t

L
sin θk +

Fw,k∆t

mL
cos θk +

∆t

mL2
[τs,k − τk] (10)

θk+1 = θk + ∆t · ωk (11)

Alternatively, we may consider the linearized model:

minimize J =

∞∑
k=0

[
xTkQxk +Ru2

k

]
(12)

subject to: xk+1 = Axk +Buk +Bddk (13)

4 Actor-Critic RL

We consider an actor-critic RL controller. Specifically, we will apply value function approximation and policy
approximation.

4.1 Value Function Approximation

Consider a quadratic value function:

V (xk) = xTk Pxk = WTφ(xk) (14)

3

Figure 3: Schematic of actor-critic RL algorithm.

For the nonlinear model, there is no guarantee that the value function is quadratic. However, for small
angles, the problem can be accurately approximated by an LQR formulation. Consequently, a quadratic
value function is a very reasonable first choice. Consider:

xk =

[
ωk

θk

]
, P =

[
p11 p12

∗ p22

]
(15)

W =

 w1

w2

w3

 , φ(xk) =

 ω2
k

ωkθk
θ2
k

 (16)

4.2 Policy Approximation

We similarly approximate the control policy as linear in the state:

uk = π(xk) = Kxk = UTσ(xk) (17)

where U = KT and σ(xk) = xk. We are ready to construct the actor-critic RL algorithm.

4.3 Actor-Critic Algorithm

0. Initialization: Select any admissible policy weights Um. Set m = 0.

1. Policy Evaluation: Run control policy πm(x) = UT
mσ(x) on the environment/system for one episode.

Collect L measured data tuples (xk, xk+1, c(xk, π(xk))). Find the least squares solution w.r.t. Wm for
regression model (a.k.a. Bellman equation)

...

xTkQxk +R
(
UT
mσ(xk)

)2
...


︸ ︷︷ ︸

=C,L×1

=


...

[φ(xk)− φ(xk+1)]
T

...


︸ ︷︷ ︸

=Φ,L×nw

W︸︷︷︸
nw×1

(18)

written compactly as C = ΦW . For example, the ordinary least squares solution is

Wm ←W ? = (ΦT Φ)−1ΦTC (19)

2. Policy Improvement: Find an improved policy by solving the following optimization problem

minimizeU T (U) = xTkQxk +Ru2
k +WTφ(xk+1) (20)

= xTkQxk +R(UTσ(xk))2 +WTφ(xk+1) (21)

4

where xk+1 is given by either the nonlinear model in (10)-(11) or the linearized model in (13). If we
apply gradient descent to solve the minimization problem, then the algorithm in both the nonlinear
and linearized cases is given by:

Uj+1 = Uj − β ·
∂T

∂U
(Uj), for β > 0 (22)

where the gradient is:
∂T

∂U
=
[
2R(UTσ(xk)) +WTφ(xk+1) ·B

]
· σ(xk) (23)

Amazingly, the only details about the model dynamics that we require is the B matrix in (7). After
gradient descent has converged, and we arrive at final iterate Uj+1, then...
Set Um+1 = Uj+1

Set m← m+ 1. Go to Step 1.

5

