Introduction to Reinforcement Learning

recorded by Teng Zeng

July 26, 2019

Optimal Control Formulation

$$
\min J = \sum_{k=0}^{N-1} c_k \{x_k, u_k\} + c_N \{x_N\}
$$
\n(1)

s.t.
$$
x_{k+1} = f(x_k, u_k); k = 0, ..., N-1
$$
 (2)

 $x_k \in \mathcal{X}_k, u_k \in \mathcal{U}_k$ (3)

Eqn.3 are feasible or "admissible" sets, Exs:

$$
\underline{x} \le x_k \le \bar{x}, \ \underline{u} \le u_k \le \bar{u}.
$$

Remember our objective: find a control law (a.k.a "policy" of the form $u_k = \pi(x_k)$ taht solves Eqns.1-3. Takes the form of a "state feedback" control law/policy. Ex:

- $u_k = -K_L x_L$, $K_L \in \mathbb{R}^{p \times n}$ (Linear state feedback)
- $u_k = f_{NL}(x_k)$, $f_{NL}: \mathbf{R}^n \longrightarrow \mathbf{R}^p$ (Nonlinear)

Dynamic Programming

Finite Time Horizon Case

Principal of Optimality: Assume at time step k you know the optimal controls from k to N. u_{k+1}, \ldots, u_{N-1} Then the optimal sequence of controls is the best control u_k at time step k paired with the future optimal control actions.

Make precise using an object control to many RL algorithms, called the value function: $V(x): \mathbb{R}^n \longrightarrow \mathbb{R}$.

Define $v_k(x_k)$ as the optimal "value" from time step k to N, given current state x_k . Bellman's Principle of Optimality Eqn:

$$
v_k(x_k) = \min_{u} \{ \underbrace{c_k(x_k, u)}_{\text{cost now!}} + \underbrace{V_{k+1}(x_{k+1})}_{\text{minimum cost function } k+1 \text{ to } N} \}
$$

Boundary/final condition:

$$
V_N(x_N) = C_N(x_N).
$$

Admittedly awkward:

- Recursive.
- Compute it backwards for all states.

× Focus on special case that is very common in practice: LQR.

$$
\min_{x_k, u_k} J = \sum_{k=0}^{N-1} [x_k^{\mathrm{T}} Q x_k + u_k^{\mathrm{T}} R u_k] + x_N^{\mathrm{T}} Q_f x_N
$$

s.t. $x_{k+1} = A x_k + B u_k, \quad k = 0, ..., N = 1,$
where $Q = Q^{\mathrm{T}} > 0, R = R^{\mathrm{T}} \ge 0, Q_f = Q_f^{\mathrm{T}} \ge 0$

Objective is convex quadratic and equality constraint is linear. Step I: Let $V_k(z)$ represent the minimum LQR cost from time step k to N, given we are currently in state z. In math,

$$
V_k(z) = \min_{u_k, \dots, u_{N-1}} \sum_{\tau=k}^{N-1} [x_{\tau}^{\mathrm{T}} Q x_{\tau} + u_{\tau}^{\mathrm{T}} R u_{\tau}] + x_N^{\mathrm{T}} Q_f x_N,
$$

where $x_k = z$, $x_{\tau+1} = x_{\tau} = Ax_{\tau} + Bu_{\tau}$. We will discover that $V_k(z) = z^{\mathrm{T}} P_k z$ where $P_k = P_k^{\mathrm{T}} \geq 0$ and can be computed recursively from P_{k+1} .

Step II: Bellman's Principle of Optimality

$$
V_k(z) = \min_{w} z^{\mathrm{T}} Qz + w^{\mathrm{T}} Rw + \underbrace{V_{k+1}(Az + Bw)}_{x_{k+1}} \}
$$

$$
V_k(z) = z^{\mathrm{T}} Qz + \min_{w} w^{\mathrm{T}} Rw + \underbrace{V_{k+1}(Az + Bw)}_{x_{k+1}} \}
$$

Recursive way to compute V_k given V_{k+1} .

Step III: Start recursion at $V_N(z) = z^T Q_f z$. Any minimizer w gives LQR optimal $u, u_k^{\text{lqr}} = \text{argmin}_w \{w^T R w +$ $V_{k+1}(Az + Bw)$. Let's begin by assuming $V_{k+1}(z) = z^{\mathrm{T}} P_{k+1} z$ with $P_{k+1} = P_{k+1}^{\mathrm{T}} \geq 0$. Show $V_k(z)$ is quadratic.

$$
V_{k+1}(z) = z^{\mathrm{T}} Q z + \min_{w} w^{\mathrm{T}} R w + (Az + Bw)^{\mathrm{T}} P_{k+1} (Az + Bw)
$$

$$
\frac{\partial}{\partial w} \text{set to } 0 : 2Rw^* + 2B^{\mathrm{T}} P_{k+1} (Az + Bw^*) = 0
$$

$$
w^* = -(R + B^{\mathrm{T}} P_{k+1} B)^{-1} B^{\mathrm{T}} P_{k+1} A z
$$

$$
w^* \text{ back to } V_k(z) = z^{\mathrm{T}} (Q + A^{\mathrm{T}} P_{k+1} A - A^{\mathrm{T}} P_{k+1} B (R + B^{\mathrm{T}} P_{k+1} B)^{-1} B^{\mathrm{T}} P_{k+1}) z
$$

$$
V_k = z^{\mathrm{T}} P_k z
$$

Infinite Time Horizon Case + LQR

Consider discounted formulation:

Plug

$$
\min_{x_k, u_k} \sum_{k=0}^{\infty} \gamma^k \cdot c(x_k, u_k),
$$

s.t. $x_{k+1} = f(x_k, u_k) \quad k = 0, 1, ...$

Define $V(x_k)$ as the optimal value function from time step k onward to ∞ given the current state is x_k . Furthermore, denote by $V_\pi(x_k)$ the value function corresponding to policy π , which is not necessarily optimal. Note:

$$
V_{\pi}(x_k) = \sum_{\tau=k}^{\infty} \gamma^{\tau-k} c(x_k, u_k)
$$

= $c(x_k, u_k) + \gamma \sum_{\tau=k+1}^{\infty} \gamma^{\tau-(k+1)} c(x_k, u_k)$
= $c(x_k, u_k) + \gamma \cdot V_{\pi}(x_{k+1})$
where $x_{k+1} = f(x_k, u_k), u_k = \pi(x_k)$

Bellman's Optimality Equation:

$$
V(x_k) = \min_{\pi(\cdot)} \{c(x_k, \pi(x_k)) + V(x_{k+1})\}
$$

Remark: This equation is also known as the discrete time Hamilton-Jacobi-Bellman (HJB) equation. The optimal policy:

$$
\pi^*(x_k) = \operatorname{argmin}_{\pi(\cdot)} \{ c(x_k, u_k) + \gamma V(x_{k+1}) \}
$$

Case study: Infinite time LQR

$$
\min \sum_{k=0}^{\infty} [x_k^{\mathrm{T}} Q x_k + u_k^{\mathrm{T}} R u_k], \ \ \gamma = 1
$$

s.t. $x_{k+1} = Ax_k + Bu_k, \ \ k = 0, 1, ...$

Like before, we will discover,

$$
V(x_k) = x_k^{\mathrm{T}} P x_k, u_k = K x_k.
$$

Consider an arbitrary K and Bellman equation:

$$
x_k^{\mathrm{T}} P x_k = x_k^{\mathrm{T}} Q x_k + u_k^{\mathrm{T}} R u_k + (A x_k + B u_k)^{\mathrm{T}} P (A x_k + B u_k).
$$

substitute $u_k = Kx_k$

$$
x_k^{\rm T} P x_k = x_k^{\rm T} [Q + K^{\rm T} R K + (A + BK)^{\rm T} P (A + BK)] x_k.
$$

Then,

$$
P^{j+1} = Q + K^{T}RK + (A + BK)^{T} P^{j} (A + BK),
$$

linear in P, for some given K. $\overline{P^j} \longrightarrow P^{\text{old}}$ as $j \longrightarrow \infty$.(???)

Improve control policy by using Bellman Optimality equation

$$
x_k^{\mathrm{T}} P x_k = \min_{w} x_k^{\mathrm{T}} Q x_k + w_k^{\mathrm{T}} R w_k + (A x_k + B w_k)^{\mathrm{T}} P (A x_k + B w_k),
$$

differentiate w.r.t w , set to zero, FONC:

$$
2RW + 2BTP(Axk + Bw) = 0,
$$

$$
w^* = \underbrace{-(R + BTPB)^{-1}BTPoldA}_{Knew} \cdot xk.
$$

$$
u_k^* = Kx_k
$$

Substitute u_k^* back into Bellman Eqn and simplifying:

$$
ATPA - P + Q - ATP B (R + BT P B)^{-1} BT PA = 0,
$$

which is a quadratic matrix eqn in P called "Ricatti Eqn." For LQR, this is called the Discrete-Time Algebraic Ricatti Eqn (DARE). Solve for P and $V(x_k) = x_k^T P x_k$ is the optimal value function.

Policy Iteration

So far, offline planning. Now, we show how the Bellman equation given fixed points equation that enable online methods. What's coming:

- Policy evaluation
- Policy improvement

Policy evaluation

Recall Bellman equation given some arbitrary policy π .

$$
V_{\pi}(x_k) = c(x_k, u_k) + \gamma V_{\pi}(x_{k+1}),
$$

where $x_{k+1} = f(x_k, u_k)$, $u_k = \pi(x_k)$. Observation and a question: Implicit in V_π . Can we make iterative scheme?

For j=0, $1, \ldots$

$$
V_{\pi}^{j+1}(x_k) = c(x_k, u_k) + \gamma V_{\pi}^{j}(x_{k+1})
$$

Does V^j_π converge as $j \longrightarrow \infty$? A: YES.

Iterative Policy Evaluation Algorithm: given arbitrary policy π , find V_{π} .

- Initialize V^0_π , $\forall x_k \in \mathcal{X}$
- For $j=0, 1, ...,$

$$
V_{\pi}^{j+1}(x_k) = c(x_k, u_k) + \gamma V_{\pi}^j(x_{k+1})
$$

Policy Improvement

How to improve π ? Use Bellman's Optimality equation. Given π ^{old}

 $\pi^{\text{new}} = \text{argmin}_{\pi(\cdot)} \{c(x_k, u_k) + \gamma V_{\pi^{\text{old}}}(x_{k+1})\}$

[Bertsekas 1996] has proved π^{new} is an improvement over π^{old} in the sense $\pi^{\text{new}} \leq \pi^{\text{old}} \ \forall x_k$

This motivates class of algorithm includes policy iteration, generalized policy iteration, value iteration.

This motivates chas of algos nis morning ches at algos including,
policy iteration, generalized policy iter, Policy Cralmtin η o Policy improving

Policy Iteration Algorithm:

- 1. Initialize with admissible policy
- 2. Policy evaluation
- 3. Policy improvement

Does j needs to go to ∞ ? No! What if $j = 0, 1, \dots < \infty$? Generalized policy iteration (GPI) What if $j = 0$? Value Iteration (VI). This converges!

Approximate Dynamic Programming

Now, we finally arrive at online adaptive optimal control methods (aka RL). You will see:

- Use data collected online from the system trajectories.
- integrate supervised learning (namely regression)

The methods are called: heuristic DP (Werbos '91, '92) and neuro-DP (Bersekas '96). We need two more small concepts:

- temporal difference (TD) error
- value function approximation

Temporal Difference (TD) Error:

Recall Bellman Equation:

$$
V_{\pi}(x_k) = c(x_k, \pi(x_t)) + \gamma \cdot V_{\pi}(x_{k+1})
$$

To get an online adaptive method, consider the time-varying residual:

$$
e_k = c(x_k, \pi(x_t)) + \gamma \cdot V_{\pi}(x_{k+1}) - V_{\pi}(x_k)
$$

• If $e_k = 0$ for a given V_π , then it satisfies the Bellman equation and is consistent with π . Idea! Fit $V_\pi(\cdot)$ s.t. residuals are small, i.e. $\sum_{k} e_k^2$.

Value Function Approximation:

To perform least square regression with TD errors on V_π . we need to parameterize $V_\pi(x)$. Consider Weierstass Approximation Theorem

$$
V_{\pi}(x) = \sum_{i=1}^{\infty} w_i \phi_i(x) = \sum_{i=1}^{L} w_i \phi_i(x) + \underbrace{\sum_{i=L+1}^{\infty} w_i \phi_i(x)}_{\epsilon_L}
$$

$$
V_{\pi}(x) = W^{\mathrm{T}} \phi(x) + \epsilon_L
$$

where $\phi(x) = [\phi_1(x), \phi_2(x), \dots, \phi_L(x)]^{\mathrm{T}}$

$$
W = [w_1, w_2, \dots, w_L]^{\mathrm{T}}
$$

 $\epsilon_L \longrightarrow 0$ uniformly in x as $L \longrightarrow \infty$. One of the main contributions of Werbes + Bertsekas was to used analyzed this approach where $\phi(x)$ is a neural network. EX: LQR

We know $V(x_k) = x_k^{\mathrm{T}} P x_k, u_k = K x_k$ The TD error of LQR:

$$
e_k = x_k^{\mathrm{T}} Q x_k + u_k^{\mathrm{T}} R u_k + x_{k+1}^{\mathrm{T}} P x_{k+1} - x_k^{\mathrm{T}} P x_k
$$

which is linear in P. Let's rewrite $V(x_k) = x_k^{\mathrm{T}} P x_k$ to apply linear least squares. $V(x_k) = x_k^{\mathrm{T}} P x_k = W^{\mathrm{T}} \phi(x)$ where $W = \text{vec}(P)$, $\phi(x_k) = x_k \otimes x_k$, quadratic monomials of elements of x. E.g.

$$
x_k = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, P = \begin{bmatrix} p_{11} & p_{12} \\ * & p_{22} \end{bmatrix},
$$

$$
x_k^T P x_k = p_{11} x_1^2 + 2p_{12} x_1 x_2 + p_{22} x_2^2
$$

$$
= \underbrace{p_{11} \quad p_{12} \quad p_{22}}_{W^T} \underbrace{\begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}}_{\phi(x)}
$$

Note, because P is symmetric, we have $\frac{n(n+1)}{2}$ parameters. Using this parameterization. the LQR TD error is

$$
e_k = \underbrace{x_k^{\mathrm{T}} Q x_k^{\mathrm{T}} + u_k^{\mathrm{T}} R u_k^{\mathrm{T}}}_{= c(x_k, u_k) + W^{\mathrm{T}} [\gamma \phi(x_{k+1}) - \phi(x_k)]} + \underbrace{C(x_k, u_k) + W^{\mathrm{T}} [\gamma \phi(x_{k+1}) - \phi(x_k)]}.
$$

 $Ax = b$

$$
\begin{bmatrix}\n\gamma \phi(x_{k+1}) - \phi(x_k) \\
\gamma \phi(x_k) - \phi(x_{k-1})\n\end{bmatrix}^{\text{T}}\n\underbrace{W}_{L \times 1} = \begin{bmatrix}\n-c(x_k, u_k) \\
-c(x_{k-1}, u_{k-1}) \\
\vdots\n\end{bmatrix}
$$

Note: we have bypassed curse of dimensionality using TD error + value function approximation.

Online Approximate Dynamic Programming

Now we are positioned to write our first online RL algorithm.

Figure 1: Flow Diagram

Remark 1: Regression in the policy evaluation step can be executed using

- $\bullet\,$ batch least square
- $\bullet\,$ recursive least square
- gradient method

Remark 2: In online PI,

$$
\begin{bmatrix}\n\gamma \phi(x_{k+1}) - \phi(x_k) \\
\gamma \phi(x_k) - \phi(x_{k-1})\n\end{bmatrix}^{\text{T}} \underbrace{W}_{L \times 1} = \begin{bmatrix}\n-c(x_k, u_k) \\
-c(x_{k-1}, u_{k-1}) \\
\vdots\n\end{bmatrix}
$$

Actor-critic Method

Introduce a second function approximator for the control policy

$$
u_k = \pi(x_k) = \mathbf{U}^{\mathrm{T}} \sigma(x_k)
$$

where $\sigma(x_k) = [\sigma_1(x_k), \ldots, \sigma_n(x_k)]^T$, $\mathbf{U}^T \in \mathbf{R}^{P \times M}$, are policy weights learned online. $\sigma(\cdot) : \mathbf{R}^n \longrightarrow \mathbf{R}^m$. Focus on 2.Policy improvement:

$$
\min_{\mathbf{U}} c(x_k, \mathbf{U}\sigma(x_k)) + \gamma W^{\mathrm{T}} \phi(x_{k+1})
$$

s.t. $x_{k+1} = f(x_k, \mathbf{U}^{\mathrm{T}} \phi(x_k))$

Define

$$
T(\mathbf{U}) = c(x_k, \mathbf{U}\sigma(x_k)) + \gamma W^{\mathrm{T}} \phi(f(x_k, \mathbf{U}^{\mathrm{T}} \phi(x_k)))
$$

Idea, gradient descent:

$$
\underbrace{\mathbf{U}^{j+1}}_{M \times p} = \underbrace{\mathbf{U}^{j}}_{M \times p} - \beta \underbrace{\frac{dT}{d\mathbf{U}}(\mathbf{U})}_{M \times p}(\mathbf{U})
$$
\n
$$
\frac{dT}{d\mathbf{U}} = \sigma(x_k) \left[\frac{\partial c}{\partial \mathbf{U}}(x_k, \mathbf{U}^{\mathrm{T}} \sigma(x_k)) + \gamma W^{\mathrm{T}} \nabla \phi(x_{k+1}) \frac{\partial f}{\partial \mathbf{U}}(x_k, \mathbf{U}^{\mathrm{T}} \sigma(x_k)) \right]
$$

Ex: LQR

$$
c(x, u) = x_k^{\mathrm{T}} Q x_k + (\mathbf{U}^{\mathrm{T}} \sigma(x_k))^{\mathrm{T}} R(\mathbf{U}^{\mathrm{T}} \sigma(x_k))
$$

$$
f(x, u) = Ax_k + B \mathbf{U}^{\mathrm{T}} \sigma(x_k)
$$

$$
\frac{dT}{d\mathbf{U}} = \sigma(x_k) [2R \mathbf{U}^{\mathrm{T}} \sigma(x_k) + \gamma W^{\mathrm{T}} \nabla \phi(x_{k+1}) B]
$$

Observation: "Model-based" Actor-critic is actually partially model free!

$$
T(\mathbf{U}) = x_k^{\mathrm{T}} Q x_k + (\mathbf{U}^{\mathrm{T}} \sigma(x_k))^{\mathrm{T}} R(\mathbf{U}^{\mathrm{T}} \sigma(x_k)) + \gamma W^{\mathrm{T}} \phi(Ax + B \mathbf{U}^{\mathrm{T}} \sigma(x))
$$

For $T(\mathbf{U})$ to be convex, **U** we need

- $R > 0$,
- $\phi(Ax + b)$ is convex in x, if ϕ is convex in argument.

Q-function, Q-learning

This section discuss model-free Rl. Key object is a generalization of the value function, called "Q-function." "Q" stands for "quality."

Introduced by Werbos 1974, '89, '91, '92 called "action-depandent" heuristic DP. Then [Watkins '89] proved convergence of Q-learning for discrete-time-value Markov Decision Processes.

Definition: Q-learning

Define $Q_\pi(x_k, u_k)$ as the Q-function associated with policy π , which gives cost from time step k onward, given the current state is x_k . You take a given control action u_k , then you follow policy π afterwards.i.e. at k given x_k

$$
k+1 \quad x_{k+1} = f(x_k, u_k)
$$

\n
$$
k+2 \quad x_{k+2} = f(x_k, \pi(x_{k+1}))
$$

\n
$$
k+3 \quad x_{k+3} = f(x_k, \pi(x_{k+2}))
$$

\n...

Note, in contrast to $V_{\pi}(x)$, $Q_{\pi}(x, u)$ depends on the control action.

Key feature of $Q_{\pi}(x_k, u_k)$: It exposes current control action as a variable, enables model-free methods. But first, some identifies to relate $Q_{\pi}(x_k, u_k)$ to $V_{\pi}(x_k)$

- 1. $Q_{\pi}(x_k, \pi(x_k)) = V_{\pi}(x_k)$
- 2. Bellman's equation for Q-function. $Q_{\pi}(x_k, u_k) = c(x_k, u_k) + \gamma V_{\pi}(-x_{k+1})$ $f(x_k,u_k)$) $\forall x_k \in \mathcal{X}, \ u_k \in \mathcal{U}.$

Denote: $Q^*(x_k, u_k)$ the optimal Q-function, which is the minimal cost for k onwards, assuming we start in state x_k take given action u_k and follow the optimal policy afterwards. - Special case of Q_π which specifically minimizes our cost. We have from 2.

$$
Q^*(x_k, u_k) = c(x_k, u_k) + \gamma V^* \left(\underbrace{x_{k+1}}_{f(x_k, u_k)} \right)
$$

Using Q^* , the Bellman's Optimally equation is simple! $V^*(x_k) = \min_u Q^*(x_k, u)$ and $\pi^*(x_k) = \text{argmin}_u Q^*(x_k, u)$.

EX. Q-function for LQR Consider the Q-function for a given control policy $u_k = \pi(x_k)$ (we know it's given linear for now $u_k = Kx_k$) for the LQR problem. The corresponding Q-function must satisfy the Bellman equation, namely

$$
Q_{\pi}(x_k, u_k) = x_k^{\text{T}} \overbrace{Q}^{\in \mathbf{R}^{n \times n}} x_k + u_k^{\text{T}} R u_k + V_{\pi}(x) \left(\underbrace{x_{k+1}}_{=Ax_k + Bu_k} \right)
$$

We know for LQR,

$$
V(x_k) = x_k^{\mathrm{T}} \underbrace{P}_{\text{solve a Riccati Eqn.}} x_k = Ax_k + Bu_k
$$

\n
$$
Q_{\pi}(x_k, u_k) = x_k^{\mathrm{T}} Q x_k + u_k^{\mathrm{T}} Ru_k + (Ax_k + Bu_k)^{\mathrm{T}} P(Ax_k + Bu_k)
$$

\nRewrite: $Q_{\pi}(x_k, u_k) = \begin{bmatrix} x_k \\ u_k \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} Q + A^{\mathrm{T}}PA & B^{\mathrm{T}}PA \\ A^{\mathrm{T}}PB & R + B^{\mathrm{T}}PB \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$
\nDefine: $Q_{\pi}(x_k, u_k) = \begin{bmatrix} x_k \\ u_k \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} S_{xx} & S_{xu} \\ \times & S_{uu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$
\nApply: $\frac{\partial Q_{\pi}}{\partial u}(x_k, u) = 0$ yield:
\n $u_k^* = -S_{uu}^{-1} S_{xu} x_k$
\n $= -(R + B^{\mathrm{T}}PB)^{-1} (B^{\mathrm{T}}PA) x_k$

This is intriguing, we somehow find a way to bypass ...

Case Study: Load frequency Control in Power System (MATLAB example)

Objective: Regulate frequency around a nominal val (e.g. 50Hz) by controlling a generator's output.

Model: Power systems are nonlinear system. We are going to use a linearize model to represent dynamics in local neighborhood of nominal state.

$$
\dot{x}(t) = Ax(t) + Bu(t)
$$
\n
$$
\dot{x}(t) = Ax(t) + Bu(t)
$$
\nwhere\n
$$
A = \begin{bmatrix}\n-\frac{1}{T_p} & \frac{K_p}{T_p} & 0 & 0 \\
0 & -\frac{1}{T_T} & -\frac{1}{T_T} & 0 \\
-\frac{1}{RT_k} & 0 & -\frac{1}{T_k} & -\frac{1}{T_E} \\
K_E & 0 & 0 & 0\n\end{bmatrix}, B = \begin{bmatrix}\n0 \\
0 \\
\frac{1}{T_G} \\
0 \\
0\n\end{bmatrix}
$$
\nState is\n
$$
x(t) = \begin{bmatrix}\n\Delta f(t) & \Delta F_g(t), \ \Delta X_g(t), \ \Delta E(t)\n\end{bmatrix}
$$
\nincremental change in freq. around nominal value\n
$$
\min \sum_{i=1}^{\infty} [x_k^T Q x_k + u_k^T u_k]
$$

 $k=0$

Watkin's Q-learning Algorithm (1989)

- Let $\alpha_k \in [0,1]$ be "learning parameter"

- Idea: Update Q-function by taking convex combination of previous Q and a new Q suggested by value iteration.

$$
Q^{m}(x_{k}, u_{k}) = (1 - \alpha_{k})Q^{m-1} + \alpha_{k} \cdot Q_{\text{VI}}^{m-1}
$$

= $(1 - \alpha_{k})Q^{m-1} + \alpha_{k}[c(x_{k}, u_{k}) + \gamma \min_{u} Q^{m-1}(x_{k+1}, u)] - \text{new Q according to VI}$
often seen as : $Q^{m}(x_{k}, u_{k}) = Q^{m-1}(x_{k}, u_{k}) + \alpha_{k}[c(x_{k}, u_{k}) + \gamma \min_{u} Q^{m-1}(x_{k}, u) - Q^{m-1}(x_{k}, u_{k})]$

Watkins' proved convergence to global optimum provided that

- 1. all state-action pairs are visited infinitely often over infinite time
- 2. $\sum_{k=1}^{\infty} \alpha_k = \infty$, $\sum_{k=1}^{\infty} \alpha_k^2 < \infty$ "Robbins-Moore Sequence"

Q: how to ensure (1)?

A: Randomized policy/control action. " ϵ -Greedy" policy is a common example that helps satisfy 1.

$$
\prod_{Pr[u_k=u|x_k=x]} (u|x) = \begin{cases} (1-\epsilon) + \frac{\epsilon}{m} & \text{if } u^* = \operatorname{argmin}_u Q(x,u) \\ \frac{\epsilon}{m} & \text{o.w. where } m = |\mathcal{U}| \end{cases}
$$

Ex. Online Q-learning for LQR

Objective: Find a feedback control policy $u_k = \pi(x_k)$ that solves $\min \sum_{k=1}^{\infty} x_k^{\text{T}} Q x_+ k + u_k^{\text{T}} R u_k$, subject to $x_k k + 1 = Ax_k + Bu + k.$

Learn optimal control online without knowledge of (A, B) from data $(x_k, x_{k+1}, c(x_k, u_k))$. We have seen that $Q(x, u)$ is quadratic

$$
Q(x_k, u_k) = \begin{bmatrix} x_k \\ u_k \end{bmatrix}^{\mathrm{T}} S \begin{bmatrix} x_k \\ u_k \end{bmatrix} = z_k^{\mathrm{T}} S z_k = Q(z_k)
$$

Learning $Q_{x,u}$ comes down to learning matrix S. Now, S can be computed directly if we know (A, B) , but in this case we will learn S from data. Write Q in parametric form:

$$
Q(z_k) = \underbrace{W^{\mathrm{T}}}_{\text{vector of elements of } S \text{ feature/basis vectors, quadratic terms in } z_k}
$$

The Q-learning Bellman Equation

$$
W_{j+1}^{T} \phi(z_{k}) = x_{k}^{T} Q x_{+} k + u_{k}^{T} R u_{k} + W_{j+1}^{T} \phi(z_{k+1})
$$

$$
W_{j+1}^{T} (\underbrace{\phi(z_{k}) - \phi(z_{k=1})}_{\text{regressor}} = x_{k}^{T} Q x_{+} k + u_{k}^{T} R u_{k}
$$

Initialize: Select initial feedback gain $u_k = K^0 x_k$ at $j = 0$ Step j:

- 1. Learn Q-function online via least square
	- collect at $k: (x_k, x_{k+1}, u_k, u_{k+1} \text{ where } u_{k+1} = Kx_{k+1}$
	- compute basis vectors: $\phi(z_t), \phi(z_{t+1})$
	- perform 1-step update of W using recursive least square (RLS) $W_{j+1}^{\mathrm{T}}(\phi(z_k) \phi(z_{k-1}) = x_k^{\mathrm{T}} Q x_k +$ $u_k^{\mathrm{T}} Ru_k$
	- Repeat at time step $k+1$ with new data $(x_{k+1}, x_{k+2}, u_{k+1}, u_{k+2}, \text{until RLS converges} \longrightarrow W_{j+1}.$
- 2. Update the control policy
	- Unpack W_{j+1} into kernal matrix

$$
Q(x_k, u_k) = \begin{bmatrix} x_k \\ u_k \end{bmatrix}^\mathrm{T} \begin{bmatrix} S_{xx} & S_{xu} \\ * & S_{uu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}
$$

• Update policy: $K^{j+1} = S_{uu}^{-1} S_{xu}, u_k = \text{TBD}$

Class slides..