
Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

Introduction to Reinforcement Learning

recorded by Teng Zeng

July 26, 2019

Optimal Control Formulation

min J =

N−1∑
k=0

ck{xk, uk}+ cN{xN} (1)

s.t. xk+1 = f(xk, uk); k = 0, . . . , N − 1 (2)

xk ∈ Xk, uk ∈ Uk (3)

Eqn.3 are feasible or “admissible” sets, Exs:

x ≤ xk ≤ x̄, u ≤ uk ≤ ū.

Remember our objective: find a control law (a.k.a “policy” of the form uk = π(xk)taht solves Eqns.1-3.

Takes the form of a “state feedback” control law/policy. Ex:

• uk = −KLxL, KL ∈ Rp×n(Linear state feedback)

• uk = fNL(xk), fNL : Rn −→ Rp(Nonlinear)

Dynamic Programming

Finite Time Horizon Case

Principal of Optimality: Assume at time step k you know the optimal controls from k to N. uk+1, . . . , uN−1
Then the optimal sequence of controls is the best control uk at time step k paired with the future optimal

control actions.

Make precise using an object control to many RL algorithms, called the value function: V (x) : Rn −→ R.

Define vk(xk) as the optimal “value” from time step k to N, given current state xk. Bellman’s Principle of

Optimality Eqn:

vk(xk) = min
u
{ck(xk, u)︸ ︷︷ ︸

cost now!

+ Vk+1(xk+1)}︸ ︷︷ ︸
minimum cost function k+1 toN

Boundary/final condition:

VN (xN) = CN (xN).

Admittedly awkward:

• Recursive,

• Compute it backwards for all states.

Page 1 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

× Focus on special case that is very common in practice: LQR.

min
xk,uk

J =

N−1∑
k=0

[xTkQxk + uTkRuk] + xTNQfxN

s.t. xk+1 = Axk +Buk, k = 0, . . . , N = 1,

where Q = QT > 0, R = RT ≥ 0, Qf = QT
f ≥ 0

Objective is convex quadratic and equality constraint is linear.

Step I: Let Vk(z) represent the minimum LQR cost from time step k to N, given we are currently in state

z. In math,

Vk(z) = min
uk,...,uN−1

N−1∑
τ=k

[xTτ Qxτ + uTτ Ruτ] + xTNQfxN ,

where xk = z, xτ+1 = xτ = Axτ + Buτ . We will discover that Vk(z) = zTPkz where Pk = PT
k ≥ 0 and can

be computed recursively from Pk+1.

Step II: Bellman’s Principle of Optimality

Vk(z) = min
w
zTQz + wTRw + Vk+1(Az +Bw)︸ ︷︷ ︸

xk+1

}

Vk(z) = zTQz + min
w
wTRw + Vk+1(Az +Bw)︸ ︷︷ ︸

xk+1

}

Recursive way to compute Vk given Vk+1.

Step III: Start recursion at VN (z) = zTQfz. Any minimizer w gives LQR optimal u, ulqrk = argminw{wTRw+

Vk+1(Az + Bw)}. Let’s begin by assuming Vk+1(z) = zTPk+1z with Pk+1 = PT
k+1 ≥ 0. Show Vk(z) is

quadratic.

Vk+1(z) = zTQz + min
w
wTRw + (Az +Bw)TPk+1(Az +Bw)

∂

∂w
set to 0 : 2Rw∗ + 2BTPk+1(Az +Bw∗) = 0

w∗ = −(R+BTPk+1B)−1BTPk+1Az

Plug w∗ back to Vk(z) = zT(Q+ATPk+1A−ATPk+1B(R+BTPk+1B)−1BTPk+1)z

Vk = zTPkz

Infinite Time Horizon Case + LQR

Consider discounted formulation:

min
xk,uk

∞∑
k=0

γk · c(xk, uk),

s.t. xk+1 = f(xk, uk) k = 0, 1, . . .

Define V (xk) as the optimal value function from time step k onward to ∞ given the current state is xk.

Furthermore, denote by Vπ(xk) the value function corresponding to policy π, which is not necessarily optimal.

Page 2 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

Note:

Vπ(xk) =

∞∑
τ=k

γτ−kc(xk, uk)

= c(xk, uk) + γ

∞∑
τ=k+1

γτ−(k+1)c(xk, uk)︸ ︷︷ ︸
Vπ(xk+1)

= c(xk, uk) + γ · Vπ(xk+1)

where xk+1 = f(xk, uk), uk = π(xk)

Bellman’s Optimality Equation:

V (xk) = min
π(·)
{c(xk, π(xk)) + V (xk+1)}

Remark: This equation is also known as the discrete time Hamilton-Jacobi-Bellman (HJB) equation. The

optimal policy:

π∗(xk) = argminπ(·){c(xk, uk) + γV (xk+1)}

Case study: Infinite time LQR

min

∞∑
k=0

[xTkQxk + uTkRuk], γ = 1

s.t. xk+1 = Axk +Buk, k = 0, 1, . . .

Like before, we will discover,

V (xk) = xTk Pxk, uk = Kxk.

Consider an arbitrary K and Bellman equation:

xTk Pxk = xTkQxk + uTkRuk + (Axk +Buk)TP (Axk +Buk).

substitute uk = Kxk
xTk Pxk = xTk [Q+KTRK + (A+BK)TP (A+BK)]xk.

Then,

P j+1 = Q+KTRK + (A+BK)TP j(A+BK),

linear in P , for some given K. P j −→ P old as j −→∞.(???)

Improve control policy by using Bellman Optimality equation

xTk Pxk = min
w
xTkQxk + wT

kRwk + (Axk +Bwk)TP (Axk +Bwk),

differentiate w.r.t w, set to zero, FONC:

2RW + 2BTP (Axk +Bw) = 0,

w∗ = −(R+BTPB)−1BTP oldA·︸ ︷︷ ︸
Knew

xk.

u∗k = Kxk

Substitute u∗k back into Bellman Eqn and simplifying:

ATPA− P +Q−ATPB(R+BTPB)−1BTPA = 0,

which is a quadratic matrix eqn in P called “Ricatti Eqn.” For LQR, this is called the Discrete-Time Algebraic

Ricatti Eqn (DARE). Solve for P and V (xk) = xTk Pxk is the optimal value function.

Page 3 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

Policy Iteration

So far, offline planning. Now, we show how the Bellman equation given fixed points equation that enable

online methods. What’s coming:

• Policy evaluation

• Policy improvement

Policy evaluation

Recall Bellman equation given some arbitrary policy π.

Vπ(xk) = c(xk, uk) + γVπ(xk+1),

where xk+1 = f(xk, uk), uk = π(xk). Observation and a question: Implicit in Vπ. Can we make iterative

scheme?

For j=0, 1, . . .

V j+1
π (xk) = c(xk, uk) + γV jπ (xk+1)

Does V jπ converge as j −→∞? A: YES.

Iterative Policy Evaluation Algorithm: given arbitrary policy π, find Vπ.

• Initialize V 0
π , ∀xk ∈ X

• For j=0, 1, . . . ,

V j+1
π (xk) = c(xk, uk) + γV jπ (xk+1)

Policy Improvement

How to improve π? Use Bellman’s Optimality equation. Given πold

πnew = argminπ(·){c(xk, uk) + γVπold(xk+1)}

[Bertsekas 1996] has proved πnew is an improvement over πold in the sense πnew ≤ πold ∀xk

This motivates class of algorithm includes policy iteration, generalized policy iteration, value iteration.

Policy Iteration Algorithm:

Page 4 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

1. Initialize with admissible policy

2. Policy evaluation

3. Policy improvement

Does j needs to go to ∞? No!

What if j = 0, 1, · · · <∞? Generalized policy iteration (GPI)

What if j = 0? Value Iteration (VI).

This converges!

Approximate Dynamic Programming

Now, we finally arrive at online adaptive optimal control methods (aka RL). You will see:

• Use data collected online from the system trajectories.

• integrate supervised learning (namely regression)

The methods are called: heuristic DP (Werbos ‘91, ‘92) and neuro-DP (Bersekas ‘96).

We need two more small concepts:

• temporal difference (TD) error

• value function approximation

Temporal Difference (TD) Error:

Recall Bellman Equation:

Vπ(xk) = c(xk, π(xt)) + γ · Vπ(xk+1)

To get an online adaptive method, consider the time-varying residual:

ek = c(xk, π(xt)) + γ · Vπ(xk+1)− Vπ(xk)

• If ek = 0 for a given Vπ, then it satisfies the Bellman equation and is consistent with π. Idea! Fit Vπ(·)
s.t. residuals are small, i.e.

∑
k e

2
k.

Value Function Approximation:

To perform least square regression with TD errors on Vπ. we need to parameterize Vπ(x). Consider Weierstass

Approximation Theorem

Vπ(x) =

∞∑
i=1

wiφi(x) =

L∑
i=1

wiφi(x) +

∞∑
i=L+1

wiφi(x)︸ ︷︷ ︸
εL

Vπ(x) = WTφ(x) + εL

where φ(x) = [φ1(x), φ2(x), . . . , φL(x)]T

W = [w1, w2, . . . , wL]T

εL −→ 0 uniformly in x as L −→ ∞. One of the main contributions of Werbes + Bertsekas was to used

analyzed this approach where φ(x) is a neural network.

EX: LQR

Page 5 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

We know V (xk) = xTk Pxk, uk = Kxk The TD error of LQR:

ek = xTkQxk + uTkRuk + xTk+1Pxk+1 − xTk Pxk

which is linear in P . Let’s rewrite V (xk) = xTk Pxk to apply linear least squares. V (xk) = xTk Pxk = WTφ(x)

where W = vec(P), φ(xk) = xk
⊗
xk, quadratic monomials of elements of x. E.g.

xk =

[
x1
x2

]
, P =

[
p11 p12
∗ p22

]
,

xTk Pxk = p11x
2
1 + 2p12x1x2 + p22x

2
2

=
[
p11 p12 p22

]︸ ︷︷ ︸
WT

 x21
x1x2
x22


︸ ︷︷ ︸
φ(x)

Note, because P is symmetric, we have n(n+1)
2 parameters. Using this parameterization. the LQR TD error

is

ek = xTkQx
T
k + uTkRu

T
k︸ ︷︷ ︸+WTφ(xk+1)−WTφ(xk)

= c(xk, uk) +WT[γφ(xk+1)− φ(xk)]

Ax = b γφ(xk+1)− φ(xk)

γφ(xk)− φ(xk−1)

. . .

T

W︸︷︷︸
L×1

=

 −c(xk, uk)

−c(xk−1, uk−1)

. . .


Note: we have bypassed curse of dimensionality using TD error + value function approximation.

Online Approximate Dynamic Programming

Now we are positioned to write our first online RL algorithm.

critic/value function

controller/actor system/environment

Policy Eval: Bellman Eqn.

Policy Improvement:
Bellman’s Opt. Eqn

Figure 1: Flow Diagram

Remark 1:

Regression in the policy evaluation step can be executed using

Page 6 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

Online Policy Iteration Online Value Iteration

Intuition: Select any initial admissible
control policy . set
1. Policy evaluation (fixed point

iteration):
Collect measured data
Find least square solution to

2. Policy improvement:

where

Intuition: Select any admissible set

1. Policy evaluation: Collect measured
data . Find
least square solutions to

2. Policy Improvement: Same

Figure 2: Summary

• batch least square

• recursive least square

• gradient method

Remark 2: In online PI, γφ(xk+1)− φ(xk)

γφ(xk)− φ(xk−1)

. . .

T

W︸︷︷︸
L×1

=

 −c(xk, uk)

−c(xk−1, uk−1)

. . .


Actor-critic Method

Introduce a second function approximator for the control policy

uk = π(xk) = UTσ(xk)

where σ(xk) = [σ1(xk), . . . , σn(xk)]T, UT ∈ RP×M , are policy weights learned online. σ(·) : Rn −→ Rm.

Focus on 2.Policy improvement:

min
U

c(xk,Uσ(xk)) + γWTφ(xk+1)

s.t. xk+1 = f(xk,U
Tφ(xk))

Define

T (U) = c(xk,Uσ(xk)) + γWTφ(f(xk,U
Tφ(xk)))

Idea, gradient descent:

Uj+1︸ ︷︷ ︸
M×p

= Uj︸︷︷︸
M×p

−β dT

dU︸︷︷︸
M×p

(U)

dT

dU
= σ(xk)[

∂c

∂U
(xk,U

Tσ(xk)) + γWTOφ(xk+1)
∂f

∂U
(xk,U

Tσ(xk))]

Page 7 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

Ex: LQR

c(x, u) = xTkQxk + (UTσ(xk))TR(UTσ(xk))

f(x, u) = Axk +BUTσ(xk)

dT

dU
= σ(xk)[2RUTσ(xk) + γWTOφ(xk+1)B]

Observation: “Model-based” Actor-critic is actually partially model free!

T (U) = xTkQxk + (UTσ(xk))TR(UTσ(xk)) + γWTφ(Ax+BUTσ(x))

For T (U) to be convex, U we need

• R > 0,

• φ(Ax+ b) is convex in x, if φ is convex in argument.

Q-function, Q-learning

This section discuss model-free Rl. Key object is a generalization of the value function, called “Q-function.”

“Q” stands for “quality.”

Introduced by Werbos 1974, ‘89, ‘91, ‘92 called “action-depandent” heuristic DP. Then [Watkins ‘89] proved

convergence of Q-learning for discrete-time-value Markov Decision Processes.

Definition: Q-learning

Define Qπ(xk, uk) as the Q-function associated with policy π, which gives cost from time step k onward,

given the current state is xk. You take a given control action uk, then you follow policy π afterwards.i.e. at

k given xk

k + 1 xk+1 = f(xk, uk)

k + 2 xk+2 = f(xk, π(xk+1))

k + 3 xk+3 = f(xk, π(xk+2))

. . .

Note, in contrast to Vπ(x), Qπ(x, u) depends on the control action.

● Value function
● State value function
● Value
● Cost-to-go

● Quality function
● State-action value

function
● Q-function

Figure 3: Table of Jargon

Key feature of Qπ(xk, uk): It exposes current control action as a variable, enables model-free methods. But

first, some identifies to relate Qπ(xk, uk) to Vπ(xk)

Page 8 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

1. Qπ(xk, π(xk)) = Vπ(xk)

2. Bellman’s equation for Q-function. Qπ(xk, uk) = c(xk, uk) + γVπ(xk+1︸ ︷︷ ︸
f(xk,uk)

) ∀xk ∈ X , uk ∈ U .

Denote: Q∗(xk, uk) the optimal Q-function, which is the minimal cost for k onwards, assuming we start in

state xk take given action uk and follow the optimal policy afterwards. - Special case of Qπ which specifically

minimizes our cost. We have from 2.

Q∗(xk, uk) = c(xk, uk) + γV ∗(xk+1︸ ︷︷ ︸
f(xk,uk)

)

UsingQ∗, the Bellman’s Optimally equation is simple! V ∗(xk) = minuQ
∗(xk, u) and π∗(xk) = argminuQ

∗(xk, u).

EX. Q-function for LQR Consider the Q-function for a given control policy uk = π(xk) (we know it’s given

linear for now uk = Kxk) for the LQR problem. The corresponding Q-function must satisfy the Bellman

equation, namely

Qπ(xk, uk) = xTk

∈Rn×n︷︸︸︷
Q xk + uTkRuk + Vπ(x)(xk+1︸ ︷︷ ︸

=Axk+Buk

)

We know for LQR,

V (xk) = xTk P︸︷︷︸
solve a Riccati Eqn.

xk = Axk +Buk

Qπ(xk, uk) = xTkQxk + uTkRuk + (Axk +Buk)TP (Axk +Buk)

Rewrite: Qπ(xk, uk) =

[
xk
uk

]T [
Q+ATPA BTPA

ATPB R+BTPB

] [
xk
uk

]

Define: Qπ(xk, uk) =

[
xk
uk

]T [
Sxx Sxu
× Suu

] [
xk
uk

]
Apply:

∂Qπ
∂u

(xk, u) = 0 yield:

u∗k = −S−1uu Sxuxk
= −(R+BTPB)−1(BTPA)xk

This is intriguing, we somehow find a way to bypass ...

Case Study: Load frequency Control in Power System (MATLAB example)

Objective: Regulate frequency around a nominal val (e.g. 50Hz) by controlling a generator’s output.

Model: Power systems are nonlinear system. We are going to use a linearize model to represent dynamics

in local neighborhood of nominal state.

ẋ(t) = Ax(t) +Bu(t)

where A =


− 1
Tp

Kp
Tp

0 0

0 − 1
TT

− 1
TT

0

− 1
RTk

0 − 1
Tk

− 1
TE

KE 0 0 0

 , B =


0

0
1
TG

0


State is x(t) = [∆f(t)︸ ︷︷ ︸

incremental change in freq. around nominal value

, ∆Pg(t), ∆Xg(t), ∆E(t)]

min

∞∑
k=0

[xTkQxk + uTk uk]

Page 9 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

Policy iteration with Q-function Value Iteration with Q-function

1. Policy evaluation:
Set
For given policy
For j = 0,1,...

Where

2. Policy improvement:

Go to step 1

1. Policy evaluation: 1 step only!

2. Policy improvement:
Refer to left.

Note: 1. And 2. Can be combined,

Online method Offline method

● Onboard
● Synchronous
● In operation

● Offboard
● A-synchronous
● Planning

Watkin’s Q-learning Algorithm (1989)

- Let αk ∈ [0, 1] be “learning parameter”

- Idea: Update Q-function by taking convex combination of previous Q and a new Q suggested by value

iteration.

Qm(xk, uk) = (1− αk)Qm−1 + αk ·Qm−1VI

= (1− αk)Qm−1 + αk[c(xk, uk) + γmin
u
Qm−1(xk+1, u)] - new Q according to VI

often seen as : Qm(xk, uk) = Qm−1(xk, uk) + αk[c(xk, uk) + γmin
u
Qm−1(xk, u)−Qm−1(xk, uk)]

Watkins’ proved convergence to global optimum provided that

1. all state-action pairs are visited infinitely often over infinite time

2.
∑∞
k=1 αk =∞,

∑∞
k=1 α

2
k <∞ - “Robbins-Moore Sequence”

Q: how to ensure (1)?

A: Randomized policy/control action. “ε-Greedy” policy is a common example that helps satisfy 1.

Π︸︷︷︸
Pr[uk=u|xk=x]

(u|x) =

{
(1− ε) + ε

m if u∗ = argminuQ(x, u)
ε
m o.w. where m = |U|

Ex. Online Q-learning for LQR

Objective: Find a feedback control policy uk = π(xk) that solves min
∑∞
k=1 x

T
kQx+k + uTkRuk, subject to

xkk + 1 = Axk +Bu+ k.

Learn optimal control online without knowledge of (A,B) from data (xk, xk+1, c(xk, uk)).

We have seen that Q(x, u) is quadratic

Q(xk, uk) =

[
xk
uk

]T
S

[
xk
uk

]
= zTk Szk = Q(zk)

Page 10 of 11

Prof. Scott Moura
SID: Tsinghua-Berkeley Shenzhen Institute

Homework 0
Due:

Learning Qx,u comes down to learning matrix S. Now, S can be computed directly if we know (A,B), but

in this case we will learn S from data. Write Q in parametric form:

Q(zk) = WT︸︷︷︸
vector of elements of S

φ(zk)︸ ︷︷ ︸
feature/basis vectors, quadratic terms in zk

The Q-learning Bellman Equation

WT
j+1φ(zk) = xTkQx+k + uTkRuk +WT

j+1φ(zk+1)

WT
j+1(φ(zk)− φ(zk=1︸ ︷︷ ︸

regressor

) = xTkQx+k + uTkRuk

Initialize: Select initial feedback gain uk = K0xk at j = 0

Step j:

1. Learn Q-function online via least square

• collect at k: (xk, xk+1, uk, uk+1 where uk+1 = Kxk+1

• compute basis vectors: φ(zt), φ(zt+1)

• perform 1-step update of W using recursive least square (RLS) WT
j+1(φ(zk)−φ(zk=1) = xTkQxk+

uTkRuk

• Repeat at time step k+ 1 with new data (xk+1, xk+2, uk+1, uk+2, until RLS converges −→Wj+1.

2. Update the control policy

• Unpack Wj+1 into kernal matrix

Q(xk, uk) =

[
xk
uk

]T [
Sxx Sxu
∗ Suu

] [
xk
uk

]
• Update policy: Kj+1 = S−1uu Sxu, uk = TBD

Class slides..

Page 11 of 11

