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Introduction to Reinforcement Learning

recorded by Teng Zeng
July 26, 2019

Optimal Control Formulation

N1
minJ = Z cx{zr, urt +en{an} (1)

k=0
st 41 = flzp,uk); k=0,...,N—1 (2)

T € Xi, ur € Uy (3)
Eqn.3 are feasible or “admissible” sets, Exs:
z<xp<ZT, u<lup<u

Remember our objective: find a control law (a.k.a “policy” of the form wu; = m(zj)taht solves Eqns.1-3.
Takes the form of a “state feedback” control law/policy. Ex:

o up =—Kpzp, K; € RP*"(Linear state feedback)

o up = fyr(zx), fnr:R"™ — RP(Nonlinear)

Dynamic Programming

Finite Time Horizon Case

Principal of Optimality: Assume at time step k you know the optimal controls from k to N. ugy1,...,un—1
Then the optimal sequence of controls is the best control u; at time step k paired with the future optimal
control actions.

Make precise using an object control to many RL algorithms, called the value function: V(z) : R” — R.

Define v () as the optimal “value” from time step k to N, given current state zj. Bellman’s Principle of
Optimality Eqn:

vg(z) = min{eg (g, u) + Vier1 (@r+1)}
U N ! ———
cost now! minimum cost function k41 toN

Boundary /final condition:
VN(mN) = CN(acN).

Admittedly awkward:
e Recursive,

e Compute it backwards for all states.
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x Focus on special case that is very common in practice: LQR.

N-1

min J = Y _ [27 Quy, + uf Rup] + 2§ Qpan
The Uk k=0

St. Tpy1 = Az + Bug, k=0,...,N =1,
where Q:QT>O7R:RTZO,Qf:Q}FZO

Objective is convex quadratic and equality constraint is linear.
Step I: Let Vi (z) represent the minimum LQR cost from time step k to N, given we are currently in state

z. In math,
N—1

Vi(z) = min Z [2XQz, + ul Ru,] + 2N Q N,

Uk .- UN —1
T=k

where xp = z, 41 = &, = Az, + Bu,. We will discover that Vj(z) = 2T P,z where P, = P,;f > 0 and can
be computed recursively from Py 1.
Step II: Bellman’s Principle of Optimality

Vi(2) = min 27 Qz + wT Rw + Vi1 (Az + Bw)}
N Tht1
Vi(2) = 27Qz + minw™ Rw + Vi1 (Az + Bw)}
B Thk+1
Recursive way to compute Vi given Vi1.
Step I1I: Start recursion at Vy(2) = 27Qfz. Any minimizer w gives LQR optimal u, u}cqr = argmin,, {wT Rw+

Vit1(Az + Bw)}. Let’s begin by assuming Vii1(z) = 27 Pyz with Poyy = Pl > 0. Show Vi(z) is
quadratic.

Vir1(2) = 27Qz + minw™ Rw + (Az + Bw) " Pyy 1 (Az + Bw)
w

)
Soset to 0 2Rw* + 2B P 1 (A2 + Bw*) =0

w* = —(R+ BTPyy1B) ' BT Py Az
Plug w* back to Vi(z) = 2" (Q + APy 1A — APy B(R+ BY P,y 1B) 'BTPiy1)z
Vi = ZTsz

Infinite Time Horizon Case + LQR
Consider discounted formulation:
nin I;)Wk e(wr, ug),
sit. xp1 = flag,uk) k=0,1,...

Define V(zy) as the optimal value function from time step k onward to oo given the current state is xy.
Furthermore, denote by V; (zy) the value function corresponding to policy 7r, which is not necessarily optimal.
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Note:

Velzw) = > 7" Fe(ag, up)
=k

(o)
= clop,up) +v Y 7 FDe(wy, up)
T=k+1

Ve (ry1)
= (@, uk) + v Va(Tt1)

where g1 = f(ag, ug), up = m(xg)
Bellman’s Optimality Equation:

V() = I}rl(i_f)l{c(wky m(zk)) + V(Tri1)}

Remark: This equation is also known as the discrete time Hamilton-Jacobi-Bellman (HJB) equation. The
optimal policy:

7 (z)) = argmin, ) {c(zy, ur) + 7V (Tp41)}
Case study: Infinite time LQR

o
minZ[mEka +up Ruy], v=1
k=0
S.t. Tpy1 = Az + Bug, k=0,1,...

Like before, we will discover,
V(l‘k) = x;fP:rk,uk = ka

Consider an arbitrary K and Bellman equation:
x} Pxy = 2} Qxy + uj Rug + (Axy + Bug) P(Axy, + Buy,).

substitute uy = Ky,
2 Pz =21 [Q + KTRK + (A+ BK)"P(A + BK)]x.

Then,
Pt =Q+ KTRK + (A+ BK)"P/(A+ BK),

linear in P, for some given K. PJ —s P°d as j — 00.(777)
Improve control policy by using Bellman Optimality equation
x} Pxy = rrgn 23 Qay, + wi Rwy, + (Azy, + Bwy,) P(Azy + Bwy),
differentiate w.r.t w, set to zero, FONC:
2RW +2B"P(Azxy, + Bw) = 0,
w* = —(R+ B"PB)"'BT P A x,.

K new

up, = Kay,
Substitute uj, back into Bellman Eqn and simplifying:
ATPA—-P+Q—-ATPB(R+ BTPB)"'BTPA =0,

which is a quadratic matrix eqn in P called “Ricatti Eqn.” For LQR, this is called the Discrete-Time Algebraic
Ricatti Eqn (DARE). Solve for P and V (z) = x} Pxy, is the optimal value function.
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Policy Iteration

So far, offline planning. Now, we show how the Bellman equation given fixed points equation that enable
online methods. What’s coming:

e Policy evaluation
e Policy improvement

Policy evaluation
Recall Bellman equation given some arbitrary policy 7.

Va(z) = e(@r, uky + YVa(Trs1),

where 111 = f(2g,ug),ur = w(x). Observation and a question: Implicit in V. Can we make iterative
scheme?
For j=0, 1, ...
VIt (an) = c(an, ug) + 7V (2r11)
Does VJ converge as j — oo? A: YES.
Iterative Policy Evaluation Algorithm: given arbitrary policy «, find V.

e Initialize V79 , Vo, e X

e For j=0, 1, ..., | |
VIt (@) = clar, ur) + YV (2r41)

Policy Improvement
How to improve 7?7 Use Bellman’s Optimality equation. Given 7

old

ne

Y = argmin, .y {c(@k, uk) + 7 Vol (T1)}

[Bertsekas 1996] has proved 77" is an improvement over 7°¢ in the sense 7% < 704 vz,

This motivates class of algorithm includes policy iteration, generalized policy iteration, value iteration.

Wl% /\Aﬁ 'n//dréf (k535 o€ /ﬂf/ms 'lhch.émﬂ

olicy Aetion; #greimlized plia) ier,

Value e bon
éva\qjg.‘

Rk %

\‘-\'61\&\ W“EN )
‘lr‘/l?; WE.

e\

Policy Iteration Algorithm:
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1. Initialize with admissible policy
2. Policy evaluation
3. Policy improvement

Does j needs to go to co? No!

What if 5 =0,1,--- < 00? Generalized policy iteration (GPI)
What if j = 07 Value Iteration (VI).

This converges!

Approximate Dynamic Programming

Now, we finally arrive at online adaptive optimal control methods (aka RL). You will see:
e Use data collected online from the system trajectories.
e integrate supervised learning (namely regression)

The methods are called: heuristic DP (Werbos ‘91, ‘92) and neuro-DP (Bersekas ‘96).
We need two more small concepts:

e temporal difference (TD) error
e value function approximation

Temporal Difference (TD) Error:
Recall Bellman Equation:

Vr(ak) = clzg, m(xe) + 7 - Va(Ther)
To get an online adaptive method, consider the time-varying residual:
e = C(:Ck;,’]T(IEt)) + - Vﬂ—((EkJrl) - Vﬂ—((Ek)

e If e, = 0 for a given V, then it satisfies the Bellman equation and is consistent with 7. Ideal! Fit V,.(-)
s.t. residuals are small, i.e. Y, €7.

Value Function Approximation:

To perform least square regression with TD errors on V;.. we need to parameterize V(). Consider Weierstass
Approximation Theorem

oo L oo
Ve(z) = sz(bz(ﬂ?) = Zwidh(ﬂ?) + ;lwiﬁbi(x)
i=1 i=1 =L+

€L

Ve(z) = Who(z) +er
where ¢(z) = [¢1(), pa2(), ..., ¢r(z)]"

W= [wlaw27 v 7wL]T

€, — 0 uniformly in x as L — oco. One of the main contributions of Werbes + Bertsekas was to used
analyzed this approach where ¢(x) is a neural network.

EX: LQR
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We know V (zy) = f Pxy,up = Kz The TD error of LQR:
er = x;an:k + u;gRuk + a:E_HkaH — x;fok

which is linear in P. Let’s rewrite V(xy) = x} Py, to apply linear least squares. V (z) = 2} Pz = WT¢(z)
where W = vec(P), ¢(xr) = x @ xp, quadratic monomials of elements of z. E.g.

o = |:$1:| p_ [p:u p12:|
Ta)’ *  paal’

T 2 2
xp Prp = p11x] + 2p127122 + p2os
2

7
:[pn P12 P22] 122
T
w N—_——
$(x)

n(n+1)
2

Note, because P is symmetric, we have parameters. Using this parameterization. the LQR TD error

1S

er =z, Quy, + up Rup + W p(zpy1) — Who(xr)

= c(xp, up) + W yo(apr1) — ()]

Ax =D

V(i) — dlan)] —c(zg, uk)

YP(xg) — P(ap—1) \WL: —c(Tp—1,up—1)
Lx1

Note: we have bypassed curse of dimensionality using TD error + value function approximation.

Online Approximate Dynamic Programming

Now we are positioned to write our first online RL algorithm.

Policy Eval: Bellman Eqn. — :
Vi (zk) = c(ag, m(x)) + YVe (Tri1) critic/value function

V(zi) ~ w' ¢(z)

(ilfk, Tht1, C(', '))

controller/actor Ug system/environment Lk
up = m(xg) Tp1 = fl@r, wr)
| L

Policy Improvement:
Bellman’s Opt. Eqn

7= armin ) c(zk, 7(xk)) + VVr (Tri1)

Figure 1: Flow Diagram

Remark 1:
Regression in the policy evaluation step can be executed using
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Online Policy Iteration Online Value lteration
Intuition: Select any initial admissible Intuition: Select any admissible ﬂ'Oset
control policy 7r-. set ™ = 0 m=0 Wy=0
1. Policy evaluation (fixed point 1. Policy evaluation: Collect measured
iteration): (2x, Tx11,c(@x, 7 (21))) data (k, Tr+1, c(zk, 7™ (zx))) Find
Collect measured data least square solutions to

Find least square solution to
WT[p(zr) — vp(2ri1)] = c(zr, 7™ (z1))
2. Policy improvement:

w1 = argmin _ {c(zr, T(k) + YWind(zki1}
where

zri1 = flor, (k)| Vg

Wind(@e) = c(r, 7" (ax)) + W, $(@ri1)
2. Policy Improvement: Same

Figure 2: Summary

e batch least square
e recursive least square
e gradient method

Remark 2: In online PI,

Yo(Tht1) — P(xk) ' —c(xp, u)

Yo(zk) — ¢(Th—1) = —c(Tp—1,Up—1)

Actor-critic Method
Introduce a second function approximator for the control policy
_ _ 11T
ug = w(zk) = U o(xk)

where o(zy) = [o1(x1), ..., 00 (7x)]T, UT € RP*M | are policy weights learned online. o(-) : R* — R™.
Focus on 2.Policy improvement:

min c(wy, Uo(zx)) + 9 6 (2441)
st. xpp1 = flog, Ulo(ar))

Define
T(U) = c(xx, Uo () + YW o(f (2, U d(1)))
Idea, gradient descent:
, 4 dr
j+1 _ Jj 3
Ut = U7 -8 = (U)

—_— =~
Mxp M xp ~~
Mxp
dr 0 0
O = o) [ (a1, U (1)) +4W 9 0(a111) 9o (a5, Uo (1)
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Ex: LQR

c(z,u) = 2} Qry, + (Ulo(xx)) T R(U o (21))

f(z,u) = Az + BU o (zy,)

;% = o(z1)[2RU  o(21) + YW Vé(241)B]
Observation: “Model-based” Actor-critic is actually partially model free!
T(U) = 2, Quy + (Ul o () " R(U o (xx)) + yW  ¢(Az + BU o (z))
For T'(U) to be convex, U we need
o >0,

o ¢(Ax +b) is convex in z, if ¢ is convex in argument.

Q-function, Q-learning

This section discuss model-free Rl. Key object is a generalization of the value function, called “Q-function.”
“Q” stands for “quality.”

Introduced by Werbos 1974, ‘89, ‘91, ‘92 called “action-depandent” heuristic DP. Then [Watkins ‘89] proved
convergence of Q-learning for discrete-time-value Markov Decision Processes.

Definition: Q-learning

Define Qr(zk,ur) as the Q-function associated with policy 7, which gives cost from time step k onward,
given the current state is ;. You take a given control action uy, then you follow policy m afterwards.i.e. at
k given xj

kE+1 Tpt1 = f(xk,uk)

k+2 xpyo = f(@, m(Trt1))

k+3 xpis = f(or, m(Tpt2))

Note, in contrast to V;(z), Q~(x,u) depends on the control action.

e Value function e Quality function
e State value function e State-action value
e Value function
e Cost-to-go e Q-function
V(i) :R" — R Q(,):R*(z) x R*"(U) — R

Figure 3: Table of Jargon

Key feature of Q(zk,u): It exposes current control action as a variable, enables model-free methods. But
first, some identifies to relate Q,(zk,ur) to Vi(zk)
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L Qnr(z, m(zx)) = Valzy)
2. Bellman’s equation for Q-function. Q(zx,ur) = c(xk, ur) + YVa( 2p41 ) Vap € X, ur €U.
~——
f(zk,uk)

Denote: Q*(xg,ux) the optimal Q-function, which is the minimal cost for k& onwards, assuming we start in
state xy take given action uy and follow the optimal policy afterwards. - Special case of () which specifically
minimizes our cost. We have from 2.

Q" (wp, ur) = c(p, up) +YV*( Zp41 )
—~—
fzk,uk)
Using Q*, the Bellman’s Optimally equation is simple! V*(xy) = min, Q*(xg, u) and 7*(x) = argmin, Q™ (zg, u).

EX. Q-function for LQR Consider the Q-function for a given control policy uy = m(xy) (we know it’s given
linear for now uy = Kxy) for the LQR problem. The corresponding Q-function must satisfy the Bellman

equation, namely

eRl’an
T T
Qn(zp,up) =2, Q xp +uy Rug + Ve(2)( 1 )
N~
=Azp+Bug
We know for LQR,
V(xy) =z} \& x, = Az + Buy,

solve a Riccati Eqn.
Qr(xg,ug) = J;Eka + uERuk + (Azy + Buk)TP(Axk + Buy)

xk]T [Q+ATPA BTPA ] [xk]

Rewrite: Qr(xg,ur) = { ATPB R+ BTPB

Uk i
T
. _ x| [Sew Seu| [T
Define: Qr(xx,uy) = Lk] [ X Suu] [Uk]
Apply: %(%“) =0 yield:
Wy = =Sy Seuti

= —(R+B"PB) Y (BTPA)x,

This is intriguing, we somehow find a way to bypass ...

Case Study: Load frequency Control in Power System (MATLAB example)

Objective: Regulate frequency around a nominal val (e.g. 50Hz) by controlling a generator’s output.
Model: Power systems are nonlinear system. We are going to use a linearize model to represent dynamics

in local neighborhood of nominal state.

%(t) = Ax(t) + Bu(t)
= 0 0 0
0

where A =

State is z(t) = | Af(t) , APy (t), AX,(t), AE(t)]

incremental change in freq. around nominal value

oo
min Z[m%@xk 4w ug)
k=0
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Policy iteration with Q-function Value Iteration with Q-function
1. Policy evaluation: 1. Policy evaluation: 1 step only!
0 —
Set Q”(wk’uk.) =0 m P = ean,ur) + QR (Thr1, uker)
For given policy 7 =7 w1 = f(@r, ur)
FOI’J?O,'],... ) Ups1 = 7" (g, up), Vor € X,up €U
Q5 = clr, we) + ¥QE (Thr1, 1)
Where
Tpp1 = fl@r, ur) 2. Policy improvement:
U1 = T(@k, uk), Vo € Xyup €U Refer to left.

2. Policy improvement:

o™ = argmin | Qo (x5, ur), Vo

me—m+l Note: 1. And 2. Can be combined,

Gotostep 1 QP = c(ak, wr) + yming QF (Try1, uri1)
Online method Offline method
e Onboard e Offboard
e  Synchronous e A-synchronous

e In operation e Planning

Watkin’s Q-learning Algorithm (1989)

- Let a € [0,1] be “learning parameter”

- Idea: Update Q-function by taking convex combination of previous Q and a new Q suggested by value
iteration.

Q™ (wr,ur) = (1 — ar)Q™ ™ + ar - Qyy !
=(1—ap)Q™ ' + aple(zr, u) +ymin Q™ *(zgy1,u)] - new Q according to VI

often seen as : - Q" (w, ur) = Q™ (zk, wr) + o fe(wh, ux) +ymin Q" (2, u) — QM (i, up)]
Watkins’ proved convergence to global optimum provided that

1. all state-action pairs are visited infinitely often over infinite time

2. 3 0 ap =00, Y po,ai <oo- “Robbins-Moore Sequence”

Q: how to ensure (1)7
A: Randomized policy/control action. “e-Greedy” policy is a common example that helps satisfy 1.

l1—e+= if u* = argmin,Q(z,u)
I (uz) = "
~ | <~ o.w. where m = [U|

Prlug=u|zr=z
Ex. Online Q-learning for LQR
Objective: Find a feedback control policy ux = 7(z)) that solves miny ">, 2 Quik + uj Rug, subject to
rpk+1= Az + Bu+ k.
Learn optimal control online without knowledge of (A, B) from data (zy, Tx4+1,c(xk, ug)).
We have seen that Q(x,u) is quadratic

T

Q(zk, u) = [wk] S {xk} =2} Sz = Q(zk)

Uk Uk

Page 10 of 11



Prof. Scott Moura Homework 0
SID: Tsinghua-Berkeley Shenzhen Institute Due:

Learning Q) ,, comes down to learning matrix S. Now, S can be computed directly if we know (A, B), but
in this case we will learn S from data. Write ) in parametric form:

E/:, P(z1)

vector of elements of .5 feature/basis vectors, quadratic terms in zj

Q(zx) =

The Q-learning Bellman Equation

Wi 16(zk) = 24 Quik 4wy Ruy + W 6(2141)
WJ‘T+1(¢(ZIC) — ¢(2p=1) = $;£Qx+k + uERuk
—_———

regressor

Initialize: Select initial feedback gain uj, = K%z at j =0
Step j:

1. Learn Q-function online via least square

e collect at k: (xg, Tpr1, Uk, Ug+1 Where ugy; = Kagyq
e compute basis vectors: ¢(zt), d(z¢41)

e perform 1-step update of W using recursive least square (RLS) W | (¢(zr) — d(2k=1) = 2, Qrr +
T
uy, Rug,

e Repeat at time step k + 1 with new data (241, Trht2, Uk+1, Ukt2, until RLS converges — W 4.

2. Update the control policy

e Unpack W, into kernal matrix

T
| Tk S:vw S:vu Tk
Q(wg,ur) = [UJ { . SWJ LJ
e Update policy: K/*! = S_-1S,.., ux = TBD

Class slides..
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