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1 Optimal Control

The canonical formulation is given by:

minimizexk,uk J =

N−1∑
k=0

ck(xk, uk) + cN (xN ) (1)

subject to: xk+1 = f(xk, uk), k = 0, · · · , N − 1 (2)

x0 = xinit (3)

xk ∈ Xk, uk ∈ Uk, k = 0, · · · , N (4)

Notation: The most fundamental elements

• xk ∈ Rn : State variable

• uk ∈ Rp : Control variable (a.k.a. “action”)

What is a state? Given a trajectory of inputs u0, · · · , uN , the (initial) state x0 is sufficient to completely
predict the evolution of a dynamic system.

Equation (1) is the objective function

• ck(xk, uk) : instantaneous or stage cost

• cN : terminal cost

Infinite time horizon:

• discounted cost: J = limN→∞
∑N
k=0 γ

k · c(xk, uk), γ ∈ [0, 1]

• average cost: J = limN→∞
1
N

∑N
k=0 c(xk, uk)

Why these formulations?

• Mathematical reason: Ensure cost remains finite.

• Conceptual reason: Stage costs are more uncertain in the future, so we discount their impact relative
to immediate stage costs.

Examples:

1. “State regulation”: J =
∑∞
k=0 xTkQxk︸ ︷︷ ︸

send xk to 0

+ uTkRuk︸ ︷︷ ︸
don’t use excessive control effort

2. “State tracking”: J =
∑∞
k=0 (xk − xref

k )TQ(xk − xref
k )︸ ︷︷ ︸

send xk close to xref

+uTkRuk
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3. “Minimum-time”: minimizexk,uk,N J =
∑N−1
k=0 1

Equation (2) are the dynamics paired with an initial condition:

xk+1 = f(xk, uk), x0 = xinit (5)

The dynamics are a mathematical model of physical laws (differential equations), e.g.

• Newtonian mechanics

• Maxwell’s equations

• Navier-Stokes

• Traffic conservation laws

• Laws of Thermodynamics

• (Electro-)Chemical Processes

• Infectious disease dynamics

Can be known/unknown, deterministic/stochastic

Equation (4) are “admissible” state and control/action sets

• xk ∈ Xk, e.g.xk ≤ xk ≤ xk

• uk ∈ Uk, uk ≤ uk ≤ uk

Objective: Find a control law (a.k.a. control “policy”) of the form

uk = πk(xk) (6)

that solves the optimal control problem. Note that the control law/policy takes a “state feedback” form.
That is, it maps states to actions. Examples:

1. Linear state feedback: uk = −K · xk, K ∈ Rp×n

2. Neural network state feedback: uk = fNN (xk), f : Rn → Rp
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2 Dynamic Programming

Dynamic programming is an algorithmic technique for solving optimal control problems by breaking it up
into a recursion of sub-problems.

Consider the discounted cost optimal control formulation

minimize J =

∞∑
k=0

γk · c(xk, uk), γ ∈ [0, 1] (7)

subject to: xk+1 = f(xk, uk), k = 0, 1, · · · (8)

Definition 1. (Value Function) Define V (xk) as the “value function,” which represents the cumulative cost
from time step k onward towards infinity, given the current state is xk. Furthermore, let Vπ(xk) represent
the value function corresponding to control policy ukπ(xk), which may or may not be optimal.

Note Vπ(xk) = c(xk, uk) + γ ·
∞∑

τ=k+1

γτ−(k+1) · c(xτ , uτ )︸ ︷︷ ︸
=Vπ(xk+1)

Vπ(xk) = c(xk, uk) + γ · Vπ(xk+1) (9)

which can be used to recursively compute the value function corresponding to some policy uk = π(xk).
We are now positioned to state Bellman’s Principle of Optimality Equation:

V (xk) = min
π(·)
{c(xk, π(xk)) + γ · V (xk+1)}

where xk+1 = f(xk, π(xk))

(10)

(11)

The optimal policy is
π?(xk) = arg min

π(·)
{c(xk, π(xk)) + γ · V (xk+1)} (12)

Remark 1. Bellman’s Principle of Optimality Equation is also known as the discrete-time Hamilton-Jacobi-
Bellman (HJMB) equation.

Note the following about Bellman’s principle of optimality equation:

• The equation is recursive in V (xk)

• Offline “planning” method

2.1 Case Study: Infinite-time Linear Quadratic Regulator (LQR)

Consider the classic and widely used linear quadratic regulator (LQR) optimal control problem

minimize J =

∞∑
k=0

[
xTkQxk + uTkRuk

]
Note γ = 1 (13)

subject to: xk+1 = Axk +Buk, k = 0, 1, · · · (14)

x0 = xinit (15)

where Q = QT � 0︸︷︷︸
p.s.d.

, R = RT � 0︸︷︷︸
p.d.

, Qf = QTf � 0 (16)

where “p.s.d.” is a positive semi-definite matrix and “p.d.” is a positive definite matrix. We will solve the
LQR problem via dynamic programming to arrive at the so-called discrete-time algebraic Riccati equation
(DARE).

We will discover that
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• V (xk) = xTk Pxk (quadratic), P = PT � 0, and P ∈ Rn×n

• π?(xk) = K · xk (linear), K ∈ Rp×n

Bellman’s (Principle of Optimality) equation for V (xk) = xTk Pxk is ...

V (xk) = c(xk, uk) + γ · V (xk+1) (17)

xTk Pxk =
(
xTkQxk + uTkRuk

)
+ 1 · xTk+1Pxk+1 (18)

and substituting uk = Kxk gives

xTk Pxk = xTk
[
Q+KTRK + (A+BK)TP (A+BK)

]
xk (19)

Since this equation must hold for all xk, we have the following matrix equation:

(A+BK)TP (A+BK)− P +Q+KTRK = 0 (20)

This equation is linear in P , and is known as the “Lypanunov equation” to find P when K is fixed. It yields
P = PT � 0 such that V (xk) = xTk Pxk. That is:

V (xk) =

∞∑
τ=k

xTτ Qxτ + uTkRuk (21)

=

∞∑
τ=k

xTτ
[
Q+KTRK

]
xτ = xTk Pxk (22)

To find an expression for K, write Bellman’s optimality equation as

xTk Pxk = min
w

{
xTkQxk + wTRw + (Axk +Bw)TP (Axk +Bw)

}
(23)

differentiating with respect to (w.r.t.) w and setting to zero gives

2Rw + 2BTP (Axk +Bw) = 0 (24)

⇒ w? = −(R+BTPB)−1BTPA︸ ︷︷ ︸
=K

·xk (25)

and thsu we have u?k = K · xk where K = −(R + BTPB)−1BTPA. Substitute back into the Bellman
equation and simplify to yield

ATPA− P +Q−ATPB(R+BTPB)−1BTPA = 0 (26)

which is quadratic in P and is known as the “Discrete-time Algebraic Riccati Equation” (DARE)

Summary of Infinite-time LQR:

ulqrk = K · xk
where K = −(R+BTPB)−1BTPA

and P solves:

ATPA− P +Q−ATPB(R+BTPB)−1BTPA = 0

Value Function: V (xk) = xTk Pxk

(27)

(28)

(29)

(30)
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3 Policy Iteration & Value Iteration

So far, we have discussed offline designs via dynamic programming. We are also interested in online learning
algorithms. Next we show that the Bellman equations are fixed point equations that enable forward-in-time
methods for online learning.

Consider the discounted cost optimal control formulation over infinite time

minimize

∞∑
k=0

γkc(xk, uk) γ ∈ [0, 1] (31)

subject to: xk+1 = f(xk, uk) (32)

Define Vπ(x) as the value function corresponding to policy π (which may or may not be optimal). Note:

Vπ(xk) =

∞∑
τ=k

γτ−k · c(xτ , uτ ) (33)

= c(xk, uk) + γ ·
∞∑

τ=k+1

γτ−(k+1)c(xτ , uτ )︸ ︷︷ ︸
=Vπ(xk+1)

(34)

Vπ(xk) = c(xk, uk) + γ · Vπ(xk+1) (35)

all where uk = π(xk).
Observation & Question: This equation is implicit in Vπ(·) and suggests the iterative scheme:

V j+1
π (xk) = c(xk, uk) + γ · V jπ (xk+1) j = 0, 1, · · · (36)

V 0
π (xk) = 0 ∀ xk ∈ X (37)

Q: Does V jπ converge as j →∞? A: YES!

Algorithm 1. (Iterative Policy Evaluation Algorithm) To compute the value function corresponding to
some arbitrary policy:

For j = 0, 1, · · · ,
V j+1
π (xk) = c(xk, uk) + γ · V jπ (xk+1) ∀ xk ∈ X (38)

where uk = π(xk),

V 0
π (xk) = 0 ∀ xk ∈ X (39)

Sutton & Barto refer to V jπ (xk) as j →∞ as a “full backup”.

Now that we have a method to evaluate a given policy, we wish to improve it. An intuitive idea is

πNEW = arg min
π(·)
{c(xk, π(xk)) + γ · VπOLD(xk+1)} (40)

where xk+1 = f(xk, π(xk)) (41)

Bertsekas [1996] has proven that πNEW is improved from πOLD in the sense that VπNEW(xk) ≤ VπOLD(xk) ∀
xk ∈ X . We call this step “policy improvement”.

SUMMARY

Policy Evaluation
Given an arbitrary policy π, find Vπ
For j = 0, 1, · · ·
V j+1
π = c(xk, uk) + V jπ (xk+1)
V 0
π (xk) = 0 ∀ xk ∈ X

where uk = π(xk), xk+1 = f(xk, uk)

Policy Improvement

Given VπOLD for some arbitrary policy πOLD, find improved policy
πNEW such that VπNEW(xk) ≤ VπOLD(xk) ∀ xk ∈ X
πNEW = arg minπ(·) {c(xk, π(xk)) + γ · VπOLD(xk+1)}
where xk+1 = f(xk, π(xk))
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Figure 1: Schematic of Policy Iteration Algorithm

This motivated a class of algorithms called Policy Iteration (PI) and Generalized Policy Iteration (GPI),
and Value Iteration (VI).

Algorithm 2. (Policy Iteration (PI) Algorithm [Sutton & Barto, Bertsekas])

1. Initialize admissible policy π0. Set m = 0.

2. Policy Evaluation: Set Vπ(xk) = 0 ∀ xk ∈ X . π ← πm.
for j = 0, 1, · · ·

V j+1
π = c(xk, uk) + V jπ (xk+1), ∀ xk ∈ X (42)

where uk = π(xk), xk+1 = f(xk, uk) (43)

3. Policy Iteration: Set VπOLD ← V j+1
π

πNEW = arg min
π(·)
{c(xk, π(xk)) + γ · VπOLD(xk+1)} (44)

where xk+1 = f(xk, π(xk)) (45)

Set πm+1 = πNEW, m← m+ 1.
Go to Step 2.

Remark 2. The policy evaluation step can be computationally onerous if j → ∞, and we must perform
each iteration for all xk ∈ X .

• Q: Can we truncate to M iterations? A: YES! Generalized Policy Iteration (GPI) algorithm.

• Q: Can we truncate to 1 iteration? A: YES! Value Iteration (VI) algorithm.

• Ref: [Howard 1960], [Puterman 1978] for theory. [Sutton & Barto, Bertsekas] for textbooks.

3.1 Case Study: LQR

Consider the linear quadratic regulator (LQR) problem:

minimize

∞∑
k=0

[
xTkQxk + uTkRuk

]
(46)

subject to: xk+1 = Axk +Buk, k = 0, 1, · · · (47)

Recall that
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• V (xk) = xTk Pxk

• uk = Kxk

Let’s apply the policy evaluation and policy improvement steps!

1. Policy Evaulation: substitute into Bellman equation

xTk P
j+1xk = xTkQxk + uTkRuk + (Axk +Buk)TP j(Axk +Buk) (V = xTPx) (48)

xTk P
j+1xk = xTk

[
Q+KTRK + (A+BK)TP j(A+BK)

]
xk ∀ xk (u = Kx) (49)

⇒ P j+1 = Q+KTRK + (A+BK)TP j(A+BK) for some K (50)

which provides an iterative solution to the Lyapunov equation.

2. Policy Improvement: Recall from before:

min
w

{
xTkQxk + wTRw + (Axk +Bw)TPOLD(Axk +Bw)

}
(51)

differentiating w.r.t. w, setting to zero, and re-arranging gives

w? = −
(
R+BTPOLDB

)−1
BTPOLDA︸ ︷︷ ︸

=KNEW

·xk (52)

We now have everything to state an iterative method to solve the infinite-time LQR optimal control
problem, using policy evaluation and policy improvement.

3. Summary

Summary of Iterative Method to solve Infinite-time LQR

uk = Kj+1 · xk
Kj+1 = −

(
R+BTP j+1B

)−1
BTP j+1A

P j+1 = Q+ (Kj)TRKj + (A+BKj)TP j(A+BKj)

(53)

(54)

(55)

(56)

In the control systems community, this is called Hewer’s method [Hewer 1971].
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4 Approximate Dynamic Programming (ADP)

In this section, we finally arrive at methods to perform online adaptive optimal control (i.e. reinforcement
learning) using data measured along the system trajectories. You will see that these methods incorporate
supervised learning (regression, in particular) and can be model-based or model-free. These methods are
broadly called “approximate dynamic programming” [Werbos 1991, 1992] or “neruo-dynamic programming”
[Bertsekas 1996].

First, we require two concepts:

1. the temporal difference error, and

2. value function approximation

4.1 Temporal Difference (TD) Error

The Bellman equation used for policy evaluation (shown below) can be thought of as a consistency equation
for the value function of a given policy π.

Vπ(xk) = c(xk, π(xk)) + γ · Vπ(xk+1) (57)

To turn this into an online adaptive method, consider time-varying residual:

ek = c(xk, π(xk)) + γ · Vπ(xk+1)− Vπ(xk) (58)

The symbol ek is known as the “temporal different (TD) error,” which is simply RL jargon for the residual
in Bellman’s equation.

Figure 2: Conceptual visualization of TD error

Suppose that at each time step k we collect data (xk, xk+1, c(xk, π(xk)). We can use this data for
supervised learning. For example, we can fit a regression model for Vπ such that it minimizes the sum of
squared residuals, ek, i.e. perform least squares on the TD errors. Next we describe the regression models
to approximate the value function.

4.2 Value Function Approximation

To perform supervised learning on Vπ using the TD errors (i.e. Bellman equation residuals), we must
parameterize Vπ(·) is some way.

Consider the Weierstrass higher order approximation theorem: There exists a (dense) basis set {φi(x)}
such that

Vπ(x) =

∞∑
i=1

wiφi(x) =

L∑
i=1

wiφi(x) +

∞∑
i=L+1

wiφi(x)︸ ︷︷ ︸
εL

(59)

= WTφ(x) + εL (60)

where φ(x) = [φ1(x), φ2(x), · · · , φL(x)]
T

(61)

W = [w1, w2, · · · , wL]
T

(62)
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and εL → 0 uniformly in x as L→∞.
One of the main contributions of Werbos and Bertsekas was to use neural networks for the regressor

vector φ(x).

4.3 Example: LQR

In LQR problems, we established:

• V (xk) = xTk Pxk is quardratic

• uk = Kxk is linear

Then the TD error for LQR is:

ek = xTkQxk + uTkRuk + xTk+1Pxk+1 − xTk Pxk (63)

which is linear in the parameter matrix P . Let’s re-write V (xk) = xTk Pxk to enable linear (least squares)
regression:

V (xk) = xTk Pxk = WTφ(x) (64)

where W = vec(P ) stacks the columns of P matrix into vector W , and φ(x) = xk ⊗ xk is a vector of
monomials of xk. This is best understood by example. Consider:

xk =

[
x1

x2

]
, P =

[
p11 p12

∗ p22

]
(65)

then

xTk Px =
[
x1 x2

] [ p11 p12

∗ p22

] [
x1

x2

]
=
[
x1 x2

] [ p11x1 + p12x2

p12x1 + p22x2

]
(66)

= p11x
2
1 + p12x2x1 + p12x1x2 + p22x

2
2 (67)

=
[
p11 2p12 p22

]︸ ︷︷ ︸
=WT

 x2
1

x1x2

x2
2


︸ ︷︷ ︸

=φ(x)

(68)

= WTφ(x) (69)

Note that because P is symmetric we have φ(·) : Rn → Rn(n+1)/2. Using this parameterization, we can
re-write the LQR TD error as:

ek = xTkQxk + uTkRuk︸ ︷︷ ︸
=c(xk,uk)

+WTφ(xk+1)−WTφ(xk) (70)

= c(xk, uk) +WT [φ(xk+1)− φ(xk)] (71)

The TD error can be computed for supervised learning by, at each time step k, collecting data (xk, xk+1, c(xk, uk)).

Remark 3. Previously, DP algorithms required evaluation of Bellman’s equation at all xk ∈ X . To achieve
this computationally, we considered a discrete-valued state space X . This results in an exponential increase
in calculations as the state vector size increases, known as the “curse of dimensionality”. Value function
approximation (and policy approximation) bypasses this challenge!

4.4 Online ADP Algorithm

We are now positioned to write our first online RL algorithms. At each time step k, collect data (xk, xk+1, c(xk, π(xk))).
Consider value function approximation Vπ(x) = WTφ(x). Then the TD error is:

ek = c(xk, π(xk)) + γ ·WTφ(xk+1)−WTφ(xk) (72)
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corresponding to linear regression model (a.k.a. the Bellman equation):

c(xk, π(xk)) = [φ(xk)− γ · φ(xk+1)]
T
W (73)

We now provide an online policy iteration algorithm, in which policy evaluation is performed via regression.

Online Policy Iteration

0. Initialization: Select any admissible control policy π0. Set m = 0.

1. Policy Evaluation: Run control policy πm on the environment/system for one episode. Collect L
measured data tuples (xk, xk+1, c(xk, π(xk))). Find the least squares solution w.r.t. Wm for regression
model (a.k.a. Bellman equation)

...
c(xk, π

m(xk))
...


︸ ︷︷ ︸

=C,L×1

=


...

[φ(xk)− γ · φ(xk+1)]
T

...


︸ ︷︷ ︸

=Φ,L×nw

W︸︷︷︸
nw×1

(74)

written compactly as C = ΦW . For example, the ordinary least squares solution is

Wm ←W ? = (ΦTΦ)−1ΦTC (75)

2. Policy Improvement: Find an improved policy via

πm+1 = arg min
π(·)

{
c(xk, π(xk)) + γ ·WT

mφ(xk+1)
}
, ∀ xk ∈ X (76)

Set m← m+ 1. Go to Step 1.

Remark 4. Besides batch least squares, one may alternatively perform the regression in Step 1 by recursive
least squares, gradient method, ridge regression, LASSO regression, etc.

Remark 5. In online policy iteration, the regressor [φ(xk)− γ · φ(xk+1)] must be “persistently excited” for
least squares to converge to a unique solution. This guarantees that (ΦTΦ) in (75) is invertible.

Remark 6. Observe that Step 1 doesn’t require knowledge of the dynamics, only data (xk, xk+1, c(xk, π(xk))).
However, the minimization in Step 2 requires us to solve:

∂c

∂u
(xk, π(xk)) + γ ·WT ∂φ

∂x
(xk+1) · ∂f

∂u
(xk, π(xk)) = 0 (77)

which requires explicit knowledge of cost function c(·, ·) and dynamics function f(·, ·).

Remark 7. Let us examine Step 2 again. Here, we must still perform a minimization for all xk ∈ X . Thus,
we have only partially avoided the curse of dimensionality. This motivates a second regression model (or
“actor neural net” in the words of Werbos and Bertsekas) to approximate the policy.

4.5 Actor-Critic Method

The previous remark motivates a second function approximator – for the control policy:

uk = π(xk) = UTσ(xk) (78)

Similar to φ(x), we define σ(xk) = [σ1(xk), σ2(xk), · · · , σM (xk)]
T

is a truncated (dense) basis set for π(·),
and UT ∈ Rp×M are the policy’s weights to be learned online.

Now let us return to Step 2: Policy Improvement. After evaluating a given policy in Step 1: Policy Eval-
uation, we obtain Wm. Now we execute the minimization in Step 2, given measured (xk, xk+1, c(xk, π(xk))).
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minimizeU c(xk, U
Tσ(xk)) + γ ·WT

mφ(xk+1)︸ ︷︷ ︸
=T (U),given xk,xk+1

(79)

where xk+1 = f(xk, U
Tσ(xk)) (80)

For convenience, we define T (U) to focus our attention on minimizing the expression w.r.t. policy parameter
vector U . A classic approach is gradient descent, i.e.

Uj+1 = Uj − β ·
∂T

∂U
(Uj), for β > 0 (81)

It is instructive to derive the gradient: ∂T/∂U ∈ RM×1, where for simplicity we assume a scalar control
input.

∂T

∂U
(Uj) =

[
∂c

∂u
(xk, U

T
j σ(xk)) · σ(xk) + γ ·WT

m · ∇φ(xk+1) · ∂f
∂u

(
xk, U

T
j σ(xk)

)
· σ(xk)

]
(82)

=

[
∂c

∂u
(xk, U

T
j σ(xk)) + γ ·WT

m · ∇φ(xk+1) · ∂f
∂u

(
xk, U

T
j σ(xk)

)]
· σ(xk) (83)

The gradient expression is a bit complex in the general case. Let us examine the LQR case:

minimizeU T (U) = xTkQxk +Ru2
k +WT∇φ(xk+1) (84)

= xTkQxk +R(UTσ(xk))2 +WT∇φ(Axk +BUTσ(xk)) (85)

where the gradient is:
∂T

∂U
=
[
2R(UTσ(xk)) +WT∇φ(xk+1) ·B

]
· σ(xk) (86)

Remark 8. A relevant question is does gradient descent converge to a global minimum? Examine T (U) for
the LQR case. T (U) is convex in U if and only if the basis function φ(·) is convex in its argument. Since we
know the value function is quadratic in LQR with positive semi-definite kernal matrix P � 0, φ(·) is convex
and gradient descent converges to the global minimum.

Remark 9. Amazingly, in LQR this actor-critic scheme requires no knowledge of system matrix A! Only
matrix B appears. More generally, policy evaluation requires zero knowledge of the dynamics. Policy
improvement only requires knowledge of the Jacobian ∂f

∂u ! Consequently, we have a partial model-based
scheme. The next section will introduce the Q-function, our key object for enabling completely model-free
schemes.

Figure 3: Schematic of actor-critic RL algorithm.
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5 Q-learning

From this section, we are going to study Reinforcement Learning in a stochastic sense. So far, the system
is deterministic, which enables to compute the derivative of the system and deal with continuous states and
action. The system can be stochastic, which is main difference from previous sections. First of all, we define
Markov Decision Process (MDP) to describe the stochastic system.

5.1 Markov Decision Process

𝑠!"# 𝑠! 𝑠!$#

𝑎!"# 𝑎! 𝑎!$#

𝑝 𝑠!"# 𝑠! , 𝑎!

𝜋$(𝑎!|𝑠!)

Figure 4: Markov Decision Process

At each time step, the agent performs an action which leads to two things: the state evolves, and then
the agent receives a reward from the environment. The goal of the agent is to discover an optimal policy
(a.k.a. state feedback controller in the language of controls scientists) such that it maximizes the total value
of rewards received from the environment in response to its actions. MDP consists of a tuple of 5 elements:

1 S: Set of states. At each time step the state of the environment is an element, s ∈ S.

2 A: Set of actions. At each time step the agent chooses an action a ∈ A to perform.

3 p(st+1|st,at): Probabilistic state transition model that describes how the environment state changes
when the user performs an action a.

4 r(st,at): Reward model that describes the real-valued reward an agent receives from the environment
after performing an action. In MDP, the reward value depends on the current state and the action
performed, i.e, r(s,a).

5 γ: A discount factor that controls the importance of future rewards.

The control policy (i.e. control law) is denoted by the symbol π. We consider randomized policies, so π
yields the probability of applying action a conditioned on being in state s:

π(a|s) : A× S → [0, 1]. (87)

The goal of the agent is to pick the best policy that will maximize the total rewards received from the
environment. Assume that environment has current states, st, the agent observes the states st and picks
an action at, then upon performing its action the environment state becomes st+1 and the agent receives a
reward rt+1. Then, the total discounted reward from time t onward can be expressed as:

Rt = rt(st,at) + γr(st+1,at+1) + γ2r(st+2,at+2) + . . .

=

T−1∑
k=0

γkr (st+k, at+k) (88)

The state value function, V π(s) is the expected total reward for an agent starting from state s. In the
controls community, this is sometimes called the cost-to-go, or reward-to-go. Importantly, note the value
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function depends on the control policy. If the agent uses a given policy π to select actions, the corresponding
value function is given by:

V π(st)
.
= Eπ

[
Rt | st

]
(89)

= Eπ
T−1∑
t′=t

[r(st′ , at′)|st]

=

T−1∑
t′=t

Eπ [r(st′ , at′)|st]

Then, the optimal policy π∗ is the policy that corresponds to the optimal value function.

π∗ = arg max
π

V π(s) (90)

The next definition, known as the “Q-function,” is critical for model-free reinforcement learning. Consider
the state-action value function, Qπ(s,a), which is a function of the state-action pair and returns a real value.
This is the value of taking action a in state s, and then following policy π. Mathematically,

Qπ(st,at)
.
= Eπ

[
Rt | st,at

]
(91)

= rt(st,at) + Est+1∼p(st+1|st,at)

[
γV π(st+1)

]
The optimal Q-function Q∗(st,at) gives the expected total reward received by an agent that starts in

st, picks (possibly non-optimal) action (at = π(st)), and then behaves optimally afterwards. Q∗(st,at)
indicates how good it is for an agent to pick action at while being in state st. Since V ∗(st) is the maximum
expected total reward starting from state st, it will also be the maximum of Q∗(st,at) over all possible
actions. The relationship between Q∗(st,at) and V ∗(st) is written as :

V ∗(st) = max
at

Q∗(st,at), ∀s ∈ S (92)

If we know the optimal Q-function, then the optimal policy can be extracted by choosing the action a
that maximizes Q∗(st,at) for state st,

π∗(s) = arg max
a

Q∗(s, a), ∀s ∈ S (93)

5.2 Iterated Q-learning

Iterated Q-learning is to update the Q-function iteratively by using the following relationship:

Qi(st, at)← r(st, at) + γ
∑

st+1∈S
p(st+1|st, at) max

at+1

Q(st+1, at+1) (94)

where i is iteration index for specific state and action. This is guaranteed to converge to the optimal one,
however, it is required to know the state transition function.

5.3 Q-learning

The key idea of Q-learning (model-free) approach is to approximate

Est+1∼p(st+1|st,at) [V (st+1)] ≈ max
at+1

Q(st+1, at+1)

by using samples of the next state st+1 in place of expectation. Q-function is iteratively updated by following:

Q(st, at)← r(st, at) + max
at+1

Q(st+1, at+1) (95)
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the algorithm involves computing (95) iteratively, ∀ st ∈ S. What about at? A natural idea is to use
at = arg maxat Qk(st,at), often referred to as “greedy”. However, provable convergence of Q-learning
requires visiting all state-action pairs infinitely many times as k → ∞ [1]. The intuitive reason is that
a greedy approach allows the state to only evolve within a subset of the entire state-space, to maximize
the reward. By only exploring a subset, the algorithm may get stuck within a local maximum for Qk.
This is referred to as the “exploration problem” in reinforcement learning. A common method to alleviate
this problem and ensure convergence to the optimum is to use the so-called “ε-greedy” approach, where
at ∼ πε(at|st):

πε(at|st) =

{
1− ε, if āt = arg maxat Q(st,at)

ε/(|A| − 1), at ∈ A \ {āt}
(96)

In words, ε-greedy does the following: With a probability 1 − ε, the policy takes the current best action,
denoted āt. All other admissible actions are chosen with equal probability ε/(|A| − 1).

After the Q-learning algorithm has converged, then a deterministic state-feedback control policy can be
recovered for implementation by setting ε = 0:

at ∼ π(at|st) =

{
1, if at = arg maxat Q(st,at)

0, otherwise
(97)

5.4 Q-learning with function approximator

For a large number of states, tabular case is intractable to iterate Q-function update. A function approxi-
mator, i.e., deep neural network is used to represent Q-function. This function approximator is denoted by
Qθ. Gradient descent algorithm is used to train the parameterized Q-function,

yi ← r(s(i,t), a(i,t)) + max
a(i,t+1)

Qθ(s(i,t+1), a(i,t+1))

θ ← arg min
θ

∑
i

‖yi −Qθ(si,t, ai,t)‖2

5.5 Deep Q Network (DQN)

Deep-Q-Network (DQN) is proposed by Google Deepmind [2] showing that deep Q-network outperforms
human behavior in Atari games. Compared to Q-learning, the main novelty of their work is as follows:

• Experience replay: the idea is that by storing an agent’s experiences, and randomly drawing batches
of them to train the network, agent can learn to perform well in the task. By keeping the experiences
agent draws random, we are able to prevent the network from only learning about what it is immediately
doing in the environment.

• Separate target network: the another major idea is that the utilization of a second network during
the training procedure. This second network is used to generate the target-Q values that will be used
to compute the loss for every action during training. Target network separation prevents Q-network’s
values from diverging.

The full algorithm for training deep Q-networks is presented in Algorithm 1. The agent selects and
executes actions according to an ε-greedy policy based on Q. Because using histories of arbitrary length as
inputs to a neural network can be difficult, Q-function works on a fixed length representation of histories
produced by the function φ. The DQN-algorithm modifies standard online Q-learning in two ways to make
it suitable for training.

First, we use a technique known as experience replay in which we store the agent’s experiences at each
time-step, et = (st, at, rt, st+1) in a data set Dt = e1, . . . , et, pooled over many episodes (where the end of
an episode occurs when a terminal state is reached) into a replay memory. During the inner loop of the
algorithm, we apply Q-learning updates, or minibatch updates, to samples of experience, (s, a, r, s

′
) U(D),

drawn at random from the pool of stored samples.
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The second modification to online Q-learning aimed at further improving the stability of our method with
neural networks is to use a separate network for generating the targets yj in the Q-learning update. More

precisely, every m-updates we clone the network Q to obtain a target network Q̂ and use Q̂ for generating
the Q-learning targets yj for the following m updates to Q. This modification makes the algorithm more
stable compared to standard online Q-learning, where an update that increases Q(st, at) often also increases
Q(st+1, a) for all a and hence also increases the target yj , possibly leading to oscillations or divergence of
the policy. Generating the targets using an older set of parameters adds a delay between the time an update
to Q is made and the time the update affects the targets yj , making divergence or oscillations much more
unlikely.

Algorithm 1: Deep Q-learning with experience replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weight θ
Initialize target-action value function Q̂ with weight θ− = θ
for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
for t=1,T do

With probability ε select a random action at
otherwise select at = argmaxaQ(φ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj , aj , rj , φj+1) from D

Set yj =

{
rj if episode terminates at step j + 1

rj + γmaxa′ Q̂(φj+1, a
′
; θ−) otherwise

Perform a gradient descent step on (yj −Q(φj , aj ; θ))
2 with respect to the network

parameters θ
Every C steps reset Q̂ = Q

end

end

6 Policy Optimization

Policy optimization is another active research area in Reinforcement Learning. So far, we learned about
dynamic programming-based approach, where value functions are updated iteratively, and implicit policy
is used to perform an action, i.e., a = arg maxaQ(s, a). In policy optimization, we aim to train a policy
directly, and value functions are used to improve the policy. The policy optimization starts from formulating
optimization problem:

max
θ

E

[
T−1∑
t=0

γtr(st, at)|πθ

]
(98)

The optimization problem (98) is finite-horizon discounted problem. The goal is to maximize the return
Rt in an episodic setting, and the parameterized policy piθ(a|s) is used for stochastic policy. The solution
for (98) is obtained by gradient-based technique, namely

g = ∇θE

[
T∑
t=0

γtr(st, at)|πθ

]
(99)

with this gradient, we update the policy using gradient ascent1 algorithm,

θk+1 ← θk + αg (100)

1the goal is to maximize the cumulative rewards, so the direction (gradient) should be increasing, so it’s called gradient
ascent.
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the gradient is intractable to compute analytically. For example, two-step horizon case,

E

[
1∑
t=0

r(st, at)|πθ

]
= E [r(s0, a0) + r(s1, a1)|πθ]

the first term can be expressed as

∇θE[r(s0, a0)] = ∇θ
∫
r(s0, a0)µ(s0)πθ(a0|s0)ds0

the second term is written as

∇θE[r(s1, a1)] = ∇θ
∫
r(s1, a1)πθ(a1|s1)p(s1|s0, a0)µ(s0)πθ(a0|s0)ds0ds1

every subsequent term adds an additional dimension of integration, which makes intractable to compute
T − 1 horizon case. Therefore, we are going to estimate the gradient, not compute analytically.

6.1 Policy Gradient

Suppose we have state-action trajectory, τ :

τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ) (101)

then the objective function, J(θ),

J(θ) = Eτ∼πθ(τ)

[
T−1∑
t=0

γtr(st, at)|πθ

]
=
∑
τ

P (τ ; θ)R(τ)

where P (τ ; θ) is the probability of τ under πθ, (a.k.a trajectory distribution)

P (τ ; θ) = µ(s0)

T−1∏
t=0

[π(at|st; θ)p(st+1|st, at)]

and the associated reward, R(τ), is denoted as:

R(τ) =

T−1∑
t=0

γtr(st, at)

the goal is to obtain the gradient estimates,

∇θJ(θ) = ∇θ
∑
τ

P (τ ; θ)R(τ) (102)

=
∑
τ

∇θP (τ ; θ)R(τ)

=
∑
τ

P (τ ; θ)

P (τ ; θ)
∇θP (τ ; θ)R(τ)

=
∑
τ

P (τ ; θ)R(τ)
∇θP (τ ; θ)

P (τ ; θ)︸ ︷︷ ︸
likelihood ratio

=
∑
τ

P (τ ; θ)R(τ)∇θ logP (τ ; θ)

= Eτ [R(τ)∇θ logP (τ ; θ)]

≈ 1

N

N∑
i=1

R(τi)∇θ logP (τi; θ) (103)
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where the fourth term is obtained by using simple calculus formula (104), the last term is called Monte
Carlo Sampling to compute the expectation.

Calculus

πθ(τ)∇θ log πθ(τ) = πθ(τ)
∇θπθ(τ)

πθ(τ)
= ∇θπθ(τ) (104)

Note, log is natural log.

We further expand the term logP (τi; θ) in (103) by following:

∇θ logP (τi; θ) = ∇θ log

 µ(s0)︸ ︷︷ ︸
Initial state dist.

T−1∏
t=0

πθ(at|st)︸ ︷︷ ︸
policy

p(st+1|st, at)︸ ︷︷ ︸
transition prob.


= ∇θ

[
logµ(s0) +

T−1∑
t=0

log πθ(at|st) + log p(st+1|st, at)

]

=

T−1∑
t=0

∇θ log πθ(at|st)︸ ︷︷ ︸
no dynamics required!

it is important to note that this becomes model-free approach as we don’t need dynamics when the stochastic
policy is used. We briefly summarize gradient estimates,

∇θJ(θ) ≈ 1

N

N∑
i=1

R(τi)∇θ logP (τi; θ) (105)

=
1

N

N∑
i=1

T−1∑
t=0

r(si,t, ai,t)

T−1∑
t=0

∇θ log πθ(ai,t|si,t) (106)

note that the expression (106) violates causality. The action in the future can not affect rewards in the past.
For example, let’s assume we have single reward,

∇θEs0,a0,...,sT−1
[rj ] = ∇θEs0,a0,...,sj [rj ]

the expectation stops at the j-th term, all other terms cancel out. Using the linearity of expectations, i.e.,

∇θEτ

[
T−1∑
t=0

r(st, at)

]
= ∇θ

T−1∑
t=0

Eτ [r(st, at)]

So, only the causal terms matter,

∇θEτ [r(sj , aj)] = Es0,a0,...,sj ,aj

[
r(sj , aj)

j∑
t=0

∇θ log πθ(at|st)

]

The reward is only affected by action that came before,

gi =

T−1∑
t′=0

r(si,t′ , ai,t′)

t′∑
t=0

∇θ log πθ(ai,t|si,t) (107)

we can further simplify (107) using algebra (expand the summation), namely,

gi =

T−1∑
t=0

∇θ log πθ(ai,t|si,t)

(
T−1∑
t′=t

ri,t′

)
(108)
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once we compute the gradient estimate for i-th trajectory, we update the policy parameter by following

g ≈ 1

N

N∑
i=1

gi

θk+1 ← θk + αg

this algorithm is so-called “REINFORCE” algorithm proposed by Ronald J. Willaims in 1992 [3].

REINFORCE Algorithm [3]

• Initialize policy, θ0 and learning rate, α

• For i=1: Number of iterations:

– For j=1: Number of rollouts N

∗ compute the gradient estimate, gi =
∑T−1
t=0 ∇θ log πθ(at|st)

(∑T−1
t′=t rt′

)
– Estimate g ≈ 1

N

∑N
i=1 gi

– Gradient update: θi+1 ← θi + αg

6.2 Policy Design

Figure 5: Gaussian Policy

The policy πθ(a|s) should be designed according to the characteristic of action space. For discrete action
space, categorical distribtuion is used. For continuous action space, diagonal Gaussian policy is adopted. In
this course, we focus on the continuous action space as the most of energy systems is described as continuous
action space. For p-dimensional Gaussian policy,

• NN takes in states and outputs mean, µ ∈ R|A| and co-variance, Σ ∈ R|A|

π(a|µ,Σ) =
1√

(2π)pdetΣ
exp−

1
2 (a−µ)TΣ−1(a−µ)

where Σ is co-variance matrix,

Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . . 0

0 0 0 σ2
p
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Figure 5 describes the process how action is drawn from given states. From policy gradient derivation,
we need to compute logπθ(a|s) in (108).

log π(a|µ,Σ) = −1

2

(
p log(2π) + log

(∏
i

σ2
i

))
− 1

2
(a− µ)TΣ−1(a− µ)

and its gradient,

∇θ log π(a|µ,Σ) = −1

2

(
∇θ log

(∏
i

σ2
i

))
−∇θ

1

2
(a− µ)TΣ−1(a− µ)

we need to further compute gradient for µ and Σ, which is neural network. The automatic differentiation
tool, i.e., { Tensorflow,PyTorch, ... } computes this information for user automatically.

7 Actor Critic

Figure 6: Actor Critic Scheme

In RL, the action is taken by a policy to maximize the total accumulated reward. By following a given
policy and processing the rewards, one should estimate the expected return given states from a value function.
In the actor-critic approach, the actor improves the policy based on the value function that is estimated by
the critic as depicted in Fig. 6.

7.1 Critic

The role of critic is to estimate the value function. There are two approaches for value function approximation,

• Monte-Carlo policy evaluation

• Bootstrap policy evaluation

For Monte-Carlo policy evaluation, suppose we have NN-type function approximator (FA) for value function,
such as

V π(st) =

T−1∑
t′=t

r(st, at)
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we save the trajectory and add together the remaining rewards, then the FA is going to average together
along with other trajectories, namely,

V π(st) ≈
1

N

N∑
i=1

T∑
t′=t

r(si,t′ , ai,t′)

we perform REGRESSION to fit the value function as follows:

• Training data: {si,t,
T−1∑
t′=t

r(si,t′ , ai,t′)︸ ︷︷ ︸
yi

}

• Loss function: minφ L =
∑
i‖yi − V πφ (si,t)‖2

• Run stochastic gradient descent (SGD)

note that Monte-Carlo target is single sample estimator compared to Ideal target,

• Ideal target: yi,t =
∑T
t′=t Eπθ [r(st′ , at′)|si,t]

• Monte-Carlo target: yi,t =
∑T
t′=t r(si,t′ , ai,t′)

where Ideal target is the truth.
Second approach is to use Bootstrapped policy evaluation, let’s start from Ideal target,

yi,t =

T∑
t′=t

Eπθ [r(st′ , at′)|si,t]

≈ r(si,t, ai,t) +

T∑
t′=t+1

Eπθ [r(st′ , at′)|si,t+1]

= r(si,t, ai,t) + V π(si,t+1)

it’s approximately equal to current time step plus the next time step expectation. The approximation part
is with single sample. We take NN, V̂ πφ as an approximation of the true value function, and plug in

• Bootstrapped: yi,t ≈ r(si,t, ai,t) + V̂ πφ (si,t+1)

We can directly use previous fitted value function and plug it in for the second timestep. In training data,
instaed of summing together all the reward from that step until the end, you’re gonna take just the reward
you saw at that time step and add to it the value function at the next time step and add these togehter.
The training data is

• Training data:
{(
si,t, r(si,t, ai,t) + V̂ πφ (si,t+1)

)}
• Loss function: minφ L =

∑
i‖yi − V πφ (si,t)‖2

• Run stochastic gradient descent (SGD)

7.2 Actor

In Actor part, we start from causal policy-gradient estimator,

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log πθ(at|st)

(
T−1∑
t′=t

rt′

)]
(109)

≈ 1

N

N∑
i=1

T−1∑
t=1

∇θ log πθ(ai,t|si,t)

(
T−1∑
t′=t

r(si,t′ , ai,t′)

)
(110)
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The critic focused on ‘Fit a model to estimate return’ part which is the last term in (110). From previous

lecture, we discussed about

Estimating return

Q̂π(st,at) ≈
T∑
t′=t

r(st′ ,at′) (111)

Improve policy

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ
(
ai,t|si,t

)
· Q̂π

i,t (112)

where Q̂π
i,t is called Reward-to-go. This term is estimated by Critic. (This is how critic

and actor are connected to each other) Then, we update the parameter as gradient ascent
approach

θ ← θ + α∇θJ(θ)

In this lecture, we study different estimate of Q̂ that might work a little bit better than just
summing together the rewards.

Q̂i,t Critic Function (Reward-to-go)

→ Estimate of expected reward if we take action ai,t in state si,t.

→ It’s an estimate that uses just a single sample
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